
51

PYFEMAX: A PYTHON FINITE ELEMENT MAXWELL SOLVER

R. Geus (ETHZ), P. Arbenz (ETHZ), L. Stingelin

The advanced Maxwell eigenvalue solver PyFemax is evolving from a research project into a mature sim-
ulation tool for RF-cavity design. Its object oriented design, based on the scripting language Python, gives
flexibility and portability. For high performance, the time-critical parts are written in C. Presently, PyFemax
relies on the Jacobi-Davidson algorithm, a recently proposed method for solving matrix eigenvalue prob-
lems. The matrices originate from a Nédélec finite element discretisation of Maxwell’s equations. Current
research is focusing on the integration of an algebraic multigrid preconditioner and the LOBPCG eigenvalue
solver, which are expected to improve both memory consumption and solution time.

INTRODUCTION

The PyFemax eigenvalue solver [3], developed at the
Institute for Scientific Computing at ETH Zurich, is a
tool for calculating eigenmodes of large RF-structures.
It uses unstructured tetrahedral grids to represent the
geometry and special algorithms in order to avoid spu-
rious modes. PyFemax has been successfully used to
calculate resonance frequencies, electric and magnetic
field distributions of large and complex structures such
as the new COMET cyclotron (Figs. 1, 2) and the large
TRIUMF 520 MeV cyclotron.

Fig. 1: View on the beam plane of the COMET RF-
structure with the visualisation program MayaVi. The
contour-plot of the electric field strength is shown. Only
the lower part of the structure is simulated taking a
magnetic surface as symmetry condition.

PYTHON IMPLEMENTATION

For the Python implementation, we had the following
goals in mind:

Modularity The code should be organised in reusable
modules. These modules should not have side
effects.

Brevity The code should be short and concise, e.g. as
the Matlab code.

Object based Sparse and dense matrices and vec-
tors should be implemented as objects, having at-
tributes and methods for improved readability and
extensibility.

High performance The performance of the code
should be comparable to the Fortran/C implemen-
tation.

In brief: We wanted to achieve the simplicity of Matlab
together with the performance of Fortran and C. In
fact we wanted to have more than that, since Matlab
lacks many language features desirable for building
large applications. Based on our previous experience
with scripting languages, we found Python to be the
language of choice for the redesign.

As an interpreted programming language, Python
is not well suited for high-performance numerical
applications, in its basic form. However, Python can
easily be extended using modules written in C for
performance-critical tasks. The Python implementation
is actually a set of modules, which are implemented
using a mixed-language programming approach: The
application logic, the input/output routines and the
finite element code are implemented in Python. On
the other hand, the time-critical parts, like the sparse
and dense linear algebra routines, including iterative
solvers, preconditioners, sparse matrix factorisations
and the eigensolver are implemented in C and are
tightly integrated into the Python framework.

FEATURES

The time-harmonic Maxwell equations describing the
electromagnetic field are discretised using second
order Nédélec vector elements. The resulting gener-
alised symmetric matrix eigenvalue problem is solved
using the JDSYM algorithm, which is an implementa-
tion of the Jacobi Davidson method optimised for the
symmetric eigenvalue problem.

Several methods for preventing the convergence
to the nullspace are implemented: projection meth-
ods, the AD method [2] and a modification of the
eigensolver. The projection methods keep all rel-
evant vectors in the positive-definite subspace to
avoid convergence to the nullspace. The AD method
transforms the original matrix eigenvalue problem to
a matrix eigenvalue problem of lower dimension with
the nullspace removed. Both methods exploit the
knowledge of a sparse basis of the nullspace and
require the solution of a large sparse linear system in
each iteration. The performance of these two methods
is comparable.

PSI - Scientific and Technical Report 2002 / Volume VI



52

The convergence to the nullspace can be prevented
in the JDSYM eigensolver itself by introducing a dy-
namic shift selection strategy and altering the ordering
scheme of the Ritz values. This method has the
advantage that no additional linear systems have to
be solved and no memory for additional matrices is
consumed. Unfortunately, this method requires more
iteration steps since the influence of the nullspace
degrades the convergence. The projection and AD
methods lead to faster convergence, if the linear
systems can be solved efficiently and enough memory
is available.

To improve the speed of the eigensolver, a set of
preconditioners were implemented: the Jacobi and
SSOR preconditioners, the ILUS incomplete fac-
torisation preconditioner, a two-level hierarchical
basis preconditioner and a preconditioner based on
algebraic multigrid (AMG). The Jacobi and SSOR
methods are both inexpensive preconditioners. SSOR
is the best method for preconditioning the Poisson
systems arising in the projection and AD methods. The
two-level hierarchical basis preconditioner exploits the
hierarchical organisation of the finite-element basis
functions. It represents a 2×2-block Gauss-Seidel
method for which the second order diagonal block is
only solved approximately. For the first-order diagonal
block, we use an iterative method accelerated by
an AMG preconditioner [11]. For small problems, a
direct method like SuperLU can be used instead. The
two-level hierarchical basis preconditioner has the
advantage that the number of iterations is independent
of the problem size. This fact makes it attractive for
very large problems.

BENEFITS OF THE MIXED-LANGUAGE APPROACH

Improved usability and flexibility With PyFemax,
the computation is steered by a small script instead of
a conventional large parameter file. Since most param-
eters have default values, usually only a small set of
parameters has to be explicitly specified in the script.
The user writing such a script can tailor the simulation
to his specific needs. The scripting facilities give the
user more flexibility for controlling the computation.

Extensibility Thanks to its object-oriented design,
PyFemax can be easily extended. Matrices, solvers,
preconditioners, etc., are designed as objects that im-
plement certain interfaces in order to be interoperable
with the PyFemax framework. New methods can be
added to PyFemax without changing the existing code.
Since all objects of a given type (e.g. preconditioners)
conform to the same standards, they are in fact inter-
changeable. Many algorithmic variants can be easily
tested by combining existing objects.

Brevity The object-oriented design promotes the
reusability of the code and thus leads to shorter pro-
grams that are easier to read.

Improved maintainability Modularisation was an im-
portant design guideline for the development of PyFe-
max. The module interfaces are kept concise. No
global variables are used. Modules can be tested and
debugged independently. All this contributes to im-
proved clarity and maintainability of the code.

Explorative computation Since Python is an inter-
preted and interactive scripting language, the user can
undertake computations in an explorative manner: In-
termediate results can be examined and taken into ac-
count before undertaking the next computational step.

Rapid development Both Python’s high level data
types and its large collection of standard modules as-
sist the programmer in focusing on the problem, instead
of implementation details.

DRAWBACKS OF MIXED-LANGUAGE APPROACH

Intricate installation on some systems Some fea-
tures of the current PySparse and PyFemax releases
require the installation of version 2.2 of the Python in-
terpreter together with some additional software pack-
ages. On some (more exotic) platforms the installation
process can become quite involved and is best carried
out by a person familiar with the operating system.

Performance penalty Since some portions of the
code are interpreted and because there is some call-
ing overhead for Python functions, the performance is
reduced. Our experiments indicate that the overall per-
formance loss is at most 20%.

Lack of compile-time checks In Python all type
checks are performed at run-time. Trivial program er-
rors may manifest themselves only after hours of com-
putation. With a compiled programming language such
errors can be detected at compile-time. With additional
tools like PyChecker [9, 6] it is possible to find some of
these errors in Python code. The trouble with the tools
presently available is that the module to be checked for
errors has to be imported. This means that the steering
scripts have to be executed until completion, in order to
be checked, which is clearly undesirable. PyChecker2,
which is currently under development, operates on the
source code alone and will solve this problem.

Success of future parallelisation unclear Research
has been conducted in the direction of parallelising
Python applications: MPI Python is a framework for
developing parallel Python applications using MPI [7].
PyPAR [8] is a more light-weight wrapper of the MPI
library for Python. Another alternative is the Python
BSP package [4, 5] that supports the more high-level
Bulk Synchronous Parallel approach.

In all these approaches, additional overhead is in-
troduced by the Python interface. Since our algorithms
only support a relatively fine-grained parallelism, it is
not clear whether any of these approaches will lead to
a successfully parallelised version of PyFemax.

PSI - Scientific and Technical Report 2002 / Volume VI



53

APPLICATION TO THE COMET STRUCTURE

The unstructured grid enables a good approximation of
complex geometries, such as the RF-structure of the
COMET-cyclotron (Figs. 1, 2) for proton therapy. An
accurate simulation of the electromagnetic fields and
the coupling of the Dees is a challenging aspect of this
structure. PyFemax was used for a much more detailed
simulation than that described in [12] and enables the
use of elements of quadratic instead of linear degree.

Fig. 2: Mesh and electric field of the fundamental mode
in the beam plane in the central region of the COMET
structure. The chimney of the ion source (circle in the
centre) as well as the capacitive coupling and the gal-
vanic coupling of the Dees are shown.

About 1.2 million tetrahedra are used leading to 10
million degrees of freedom. The simulation required
12 GBytes of memory and 31 hours of CPU-time on
the HP Superdome at ETHZ for the calculation of
the first five eigenmodes. The resonance frequencies
were found at 73.18 MHz, 73.44 MHz, 73.69 MHz,
92.46 MHz and 129.97 MHz with a relative residual be-
low 8.2 × 10-5.

CONCLUSIONS

Numerical experiments already confirm the good
performance of PyFemax. This motivates further
extension of a powerful simulation tool. Postprocessing
operations like path and surface integrals should be
implemented for the calculation of RF-parameters
such as the shunt impedance and the quality factor.
Field interpolation could be used for exporting the field
values into beam dynamics programs.

Improvement of the interface to pre- and post-
processing tools such as NETGEN [1] for meshing
and MayaVi [10] for visualisation should simplify the
usage of PyFemax and increase the potential user
community. Implementation of first-order Nédélec
finite elements for fast and less accurate simulations

with much less memory usage will make calculations
of complex structures on small desktop computers
possible.

Additional solver types for efficient eigenmode calcu-
lation in a given interval of a dense spectrum should
be studied. This will enable the calculation of a set
of eigenmodes as basis functions for the cavity field
distribution.

An intelligent restart algorithm would help to save com-
putation time, in cases where the mesh is deformed
slightly in each iteration for geometry optimisation.

REFERENCES

[1] http://www.sfb013.uni-linz.ac.at/˜joachim/netgen/.

[2] P. Arbenz and Z. Drmač. On positive semidefinite
matrices with known null space. SIAM J. Matrix
Anal. Appl., 24(1):132–149, 2002.

[3] R. Geus. The Jacobi-Davidson algorithm for solv-
ing large sparse symmetric eigenvalue problems
with application to the design of accelerator cavi-
ties. PhD thesis, Swiss Federal Institute of Tech-
nology Zurich, December 2002. Diss. ETH No.
14734.

[4] J. M. D. Hill, B. McColl, D. C. Stefanescu, M. W.
Goudreau, K. Lang, S. B. Rao, T. Suel, T. Tsanti-
las, and R. Bisseling. BSPlib: The BSP program-
ming library. Parallel Computing, 1998.

[5] K. Hinsen. High level scientific programming with
Python. In P. M. A. Sloot, C. J. K. Tan, J. J.
Dongarra, and A. G. Hoekstra, editors, Compu-
tational Science - ICCS 2002, volume 2331 of
LNCS, pages 691–700. Springer, 2002.

[6] C. Laird and K. Soraiz. Regular expressions: Syn-
tax checking the scripting way. UNIX Review, April
2002. http://www.unixreview.com/.

[7] P. Miller. MPI Python. SourceForge project http:
//sourceforge.net/projects/pympi/.

[8] O. Nielsen. PyPAR - Parallel Python. http://
datamining.anu.edu.au/˜ole/pypar/.

[9] N. Norwitz. PyChecker. SourceForge project http:
//pychecker.sourceforge.net/.

[10] P. Ramachandran. Mayavi: A free tool for CFD
data visualization. In 4th Annual CFD Symposium.
Aeronautical Society of India, August 2001. http:
//mayavi.sourceforge.net/.

[11] S. Reitzinger and J. Schöberl. An algebraic multi-
grid method for finite element discretizations with
edge elements. Numer. Linear Algebra Appl.,
9(3):223–238, 2002.

[12] L. Stingelin. Computational electrodynamics on
the LINUX-cluster. PSI Scientific Report, 2001. VI.

PSI - Scientific and Technical Report 2002 / Volume VI


