
132

A PC CLUSTER FOR THE MICROTOMOGRAPHY

A. Bertrand, R. Krempaská, M. Stampanoni

A cluster of Intel computers has been set up, managed by an in-house developed software, in order to
process in an efficient way the large amount of data produced by a microtomography experiment

TOMOGRAPHY AND DATA CRUNCHING

The tomography technique requires a high number of
high-resolution images to be acquired, which are then
processed in order to obtain cross sections (slices) of
the investigated sample.

Before starting this project, each final image needed
3-4 minutes in order to be processed. This time has
been significantly reduced with the cluster to
16 images per minutes.

ONLINE SINOGRAM CREATION

Before raw data can be reconstructed, an intermedi-
ate processing is needed which produces images tak-
ing the same line on all the raw images. Those inter-
mediate images are called sinograms. In order to
speed up the data elaboration process, we imple-
mented this software in such a way that they are pro-
duced automatically during the microtomography
scan. The synchronization of this application with the
CCD camera is done by monitoring an EPICS [1] vari-
able.

HARDWARE INVOLVED

We chose to build the cluster based on Intel P4 com-
puters. By cluster we mean simply a stack of 8 rack-
mounted computers. We didn’t use multi-processor
computers, as they are more expensive than the
same number of single CPU boxes.

Experimental
workstation

SLS File server

Cluster node 1

Cluster node 8

. . .

Fig. 1: Hardware configuration

All data are taken on a workstation running at the
beamline, which stores the images on a SLS file
server via a 100 Mbit network connection. Cluster
nodes and file server are linked via a gigabit network.

SOFTWARE AND PROTOCOL

Instead of following the approach of complex clusters
like commercial software or Beowulf [2] solutions, we
decided to implement the control software of the
cluster by using Python [3] scripts and C/Fortran
codes for the reconstruction software.

Because of its good performance and easy imple-
mentation, we chose the HTTP standard. This choice

enabled us also to debug our system, during the de-
velopment, with any web browser.

DATAFLOW

The implementation chosen allows for queuing com-
mands in a sequential order. The server will then dis-
patch single reconstruction jobs across available
nodes.

Command line
Send rec

…

1

2

Rec master

Queue of jobs

Rec server

Rec slave

Rec slave

…

On the workstation On the fileserver On nodes

Fig. 2: Processes and dataflow

As the time needed to transfer our images is not neg-
ligible we implemented the main control and nodes
control in a multi threaded way in order to transfer
data in parallel to the reconstruction of another image.
In this way the CPU is used all the time for the recon-
struction and transfer back and forth (data and results)
is done in the background.

Thread 1 Thread 2Thread 2

Receive sino

Reconstruct

Send image

Receive sino

Reconstruct

Send image

Receive sino

Reconstruct

Send image

Receive sino

Reconstruct

Send image

Receive sino

Reconstruct

Send image

Receive sino

Reconstruct

…

Receive sino

Reconstruct

Receive sino

Reconstruct

Send image

Receive sino

Reconstruct

Send image

Receive sino

Reconstruct

Receive sino

……

Fig. 3: Multithreading on the node

SOFTWARE REUSABILITY

As the software functionalities are to transfer data and
in parallel launch some command line software, the
same concept can be reused on any other application
where a long processing time is needed without inter-
action between processes.

REFERENCES

[1] http://www.aps.anl.gov/epics

[2] http://www.beowulf.org/

[3] http://www.python.org/

 PSI - Scientific and Technical Report 2003 / Volume VI

