
49

PSI PROTON ACCELERATOR CONTROL SYSTEM UPGRADE

D. Anicic, M. Gasche, H. Lutz, A.C. Mezger

The I/O Computers (IOC) in our Control System are, since over ten years, VME based. The data
acquisition and control equipment was primarily based on bit serial CAMAC, interfaced through VME to
CAMAC modules. The interfaces to PLC or other kinds of equipment were always implemented as
CAMAC modules. In the future we will use VME modules whenever applicable, and communicate with
PLC-s directly over TCP/IP. The same PLC communication will be used to interface the industrial PLC
based control system for the new PROSCAN project. Support for centralized write (set value) logging was
implemented, too. This is highly useful in debugging distributed applications. Concurrently we are also
replacing the existing HP rt743 IOC-s running under HP-RT operating system with the new MVME51xx
running under Lynx OS.

IOC REPLACEMENT

Motivation

The motivation for the IOC upgrade and replacement
program is twofold. Firstly, the present HP rt743 single
board VME real-time computers, under the HP-RT
operating system, are over ten years old and will not be
supported for a much longer time anymore. Secondly,
we have new projects based on VME modules. The
upgrade has already started. We use MVME 51xx VME
computers with the Lynx OS operating system. This has
been already announced at [1].

Old IOC

The old IOC computers (formerly FEC, Front-End
Computers) are VME based HP rt743 with HP-RT OS.
They are now already aged (over ten years), and
running out of support. The controlled equipment was
CAMAC with the addition of the home-developed
orthogonal bus, ROAD-C, interfaced through a CAMAC
module. PLC devices are connected through ROAD-C
based RS232 interface. Physical interface to CAMAC is
the CERN developed “CAMAC Serial Highway Driver in
VME” (L. Antonov, V. Dimitrov, L.Heinze). The IOC
software (called Services) implementation was made
with mostly only CAMAC in mind, but it’s design [2] and
architecture has allowed for, the now welcome,
extensions. We will continue to use these IOC
computers, since we did not have a single failure in all
this years of any of our 14 IOC-s.

New IOC

The CAMAC equipment is becoming more and more
outdated, harder to obtain and to repair. On the other
hand, there are many industry VME products, and our
own hardware developments are driving in a VME
direction, too. The existing IOC-s are VME based, but it
was just that VME equipment was in any case not used
before. The new IOC-s were chosen to fit the existing
VME crates in case of the HP rt743 failure and to
provide for the coming needs. The Motorola MVME
51xx PowerPC single board VME computers running
Lynx OS satisfy these needs. They provide two
Ethernet interfaces, one for the Controls network and
the other one for the IOC’s private PLC network. The
same IOC was chosen in collaboration with the SLS
(Swiss Light Source) of PSI. The IOC software was

extended to support VME modules and TCP/IP
communication to PLC-s. Since then, we have three
new IOC in operation. The Figure 1 shows the new IOC
hardware configuration.

VME Crate

CAMAC

MVME51xx
CPU
(IOC)

CAMAC
interface

Eth1

RS232

Eth2

VME
Card

VME
Card

PLC

IOC's Local PLC Network

Controls Network

Fig. 1: The new IOC hardware configuration

VME INTEGRATION

For the VME (and PLC) integration, the structure of the
IOC software had to be slightly modified. The device
object class, DEVICE_OB (Fig. 2), was using CAMAC
addresses only. The create method was modified to
accept either CAMAC address or the VME/PLC
configuration (cdriver and configStr strings). According
to the cdriver the appropriate C_DRIVER’s init_HW
(create) method is called with corresponding configStr.
It parses the configuration string, detects the hardware
and does the necessary initialization. Further on, the
DEVICE_OB’s methods (read, write, …) are adjusted to
use C_DRIVER’s methods. The C_DRIVER class
(Fig. 3.) is implemented in CC language, to reduce the
number of classes. The original software is written
mostly in Sather OO (Object Oriented) language. The
initial design required one new class for almost any new
device functionality. The C_DRIVER for the VME IP
modules uses the CARRIER_BOARD class (Fig. 3.)
which does the carrier board initialization part. The IP
modules are addressed as A,B,C and D, and a special
address L denoting the carrier board’s internal

PSI - Scientific and Technical Report 2003 / Volume VI

50

registers, or additional dual ported memory in a case of
the DSP equipped carrier board. Both classes
implement the isGreen method, which is used to signal
false database configuration (needed HW module is not
in that VME or IP slot). It could be used to handle hot-
swap (detected through VME bus errors) if we find it
necessary in the future.

crea te(chan n el, fu nc tio n ality , con fig S trin g o r C A M A C _ add ress)
u se s C _ D R IV E R o r C A M A C _ O B JE C T
read ()
w rite (v a lu e)
in crem e n t(va lu e)
se tA n dC lear(v a lue)

DEVICE_OB:

Fig. 2: simplified DEVICE_OB class.

init_HW(configString)
optionaly uses CARRIER_BOARD
isGreen()
getHiLimit(channel, functionality)
getLoLimit(channel, functionality)
getAnaValue(channel, functionality)
setAnaValue(channel, functionality)
getDigValue(channel, functionality)
setDigValue(channel, functionality)
getArrOfValues(channel, functionality)

C_DRIVER:

in it_H W (con fig S tring)
isG ree n()
g etIP io (IP s lo t)
g etIP m em (IP slo t)

CARRIER_BOARD:

Fig. 3: C_DRIVER and CARRIER_BOARD class

PLC INTEGRATION

From the IOC software point of view there is no
difference between VME and PLC equipment down to
the C_DRIVER interface. Each C_DRIVER class then
implements it’s own communication with the connected
“hardware”. For PLC equipment, the client (the IOC)
communicates with the PLC “hardware” on TCP/IP,
connection mode. To be able to detect if the
corresponding PLC is connected, we have defined the
PLC message format (Fig 4.).

PLC Message

O_Name O_Type O_Offset

Object Descriptors

O_Name O_Type O_Offset

O_Name O_Type O_Offset

NrOfObjectDescriptors

Payload Header

Payload

Payload Data

Message Header
ByteOrder

StringByteOrder
MsgLength

MsgType
Alive

Reserved

Message Header

Fig. 4: PLC message format

The message header provides byte order and string
byte order detection, message size (in 16 bit words),
message type and detection of stale PLC. The object
descriptors contain the device names, which must be
the same as official control system device names, type
of the object and offset to its data in Payload Data
space. Object Types are tightly coupled to Message
Type (in a PLC C_DRIVER implementation) and define
the structure of the object’s data. For any new PLC
message type the PLC programmer has to provide the
structure of the used object types which then has to be
implemented in new C_DRIVER class. On connect, the
client (IOC) checks the message size and format for
validity, checks the used device names and hooks them
to the control system device objects. Any
inconsistency/error results in a break of communication,
and repeats the connect procedure. After successful
connect only the Payload Data section and Alive
counter in a Message Header are allowed to change.
Any other change results in a break of the
communication and restarts with a new connect.

SET VALUE LOGGING

The applications in our control system run on operator
workstations and on dedicated server workstations. In
some cases an application may consist of several
stand-alone programs. In such situations some sort of
inter-process communication and synchronization is
needed. This is in turn sometimes complicated to
debug. To be able to debug such applications more
easily, we have modified the IOC software to report all
messages containing any non-read operations to the
dedicated “Set Value Logging” server.

It stores the data for later retrieval and its companion
retrieval/display application can show the incoming data
in historical or real time mode. This gives us the
possibility to locate which application, from which
operator or server workstation, and under what
circumstances has set which value. The time related
dependences from different applications can also be
detected, helping debug distributed applications. The
stored data is kept for approximately one week, which
is sufficient for the purpose. The amount of stored data
is approximately 2 gigabytes per day, which is more
than 60 million values. About one third of it, 20 million,
are non-read values (approx. 250 per second). The
most of these set values come from feedback
applications for orbit centering, ion source regulation
and automated filed corrections.

The retrieval/display application (Fig 5.) is written in
Java. It can display the graph trends for clients and
IOC-s, either a total or for each separately. The
historical or the real-time values can be displayed in a
compact or in a full form. The filtering functions can be
used to reduce the amount of displayed data, or to
show the data for the particular workstation or IOC or
application or Device, … The filter is a logical
expression (>, <, ==, !=, and, or, not, bit operations,
string operations, …) on all of the message and device
parameters.

PSI - Scientific and Technical Report 2003 / Volume VI

51

Fig. 5: Set Value Logging retrieval application

FINAL WORD

The planned control system upgrade is on schedule.
The framework to be able to use VME modules and to
communicate with PLC-s over TCP/IP has been
implemented. Adding new VME modules or new PLC
message formats requires just one, quite simple, C file
(see C_DRIVER above). Currently implemented is the
PLC message format from our vacuum system group.
The supported VME IP modules are: Hytec 8401 ADC,
Hytec 8402 DAC, Hytec 8501 digital I/O, PSI RPM (Run
Permit Module). The supported carrier board types are:
Hytec 8001, Hytec 8002, Hytec 8003 (with DSP). VME
modules: OMS VME58 eight channel motor controller.
With DSP equipped Hytec 8003 carrier board, we plan
to implement various “intelligent” (called KOMBI)
controllers. They hide the actual IP modules used,
presenting their own register/memory map towards the
control system (C_DRIVER). Currently implemented
are two versions for digital power supply controllers
connected by optical link. A very important job was done
in a migration of our configuration database from VMS
to Linux, and extensions to cover VME and PLC
requirements [3].

REFERENCES

[1] D. Anicic, Replacement of Magnet Power Supplies,
Control and Field-bus for the PSI Cyclotron
Accelerators, ICALEPCS’01, San Jose, California,
2001.

[2] Z. Sostaric, Modern Design of a Fast Front-end
Computer, ICALEPCS’93, Berlin, Germany, 1993.

[3] H. Lutz, Migration of the Configuration Database
for PSI Cyclotron Accelerators, ICALEPCS’03,
Gyeongju, Korea, 2003.

PSI - Scientific and Technical Report 2003 / Volume VI

