
56

A NOVEL MASSIVE PARALLEL POSSION SOLVER FOR BEAM DYNAMICS

A. Adelmann, C. Pflaum 1

1 University Erlangen

We present a novel parallel Poisson solver based on semi-unstructured grids, a finite element discretiza-
tion (FEM) of the three dimensional computational domain. Multigrid is used for solving the resulting linear
system of equations. The code is based on expression templates and written in C++. Results for a bench-
marking problem are presented.

INTRODUCTION AND MOTIVATION

Many problems in beam dynamics are concerned with
calculation of the inter-particles forces for millions of
particles. One particular hard example is described
in this annual report, see [1]. In order to estimate
the interparticle forces in the electrostatic approxima-
tion with intrinsic open boundary conditions we have
naively to compute the electric field at every particle’s
position by summing (in continuum) over the contribu-
tions from all other N − 1 particles: using �qij = �qi − �qj

and qij = |�qi − �qj |. This is exact up to numerics, as
no spatial discretization is made, but at the price of the
highest computational effort, namely O(N2). In order
to avoid a numerical breakdown at small interparticle
distances, a softening parameter ε was included:

�Ei =
1

4πε0

∑

j �=i

ej
�qij

(q2
ij + ε2)3/2

.

POISSON SOLVER

Another way to formulate the same problem is to cal-
culate the electric field �E via the gradient of the scalar
potential �E = ∇φ. The scalar potential is obtained by
solving a Poisson problem. The boundary conditions of
this Poisson problem are Dirichlet boundary conditions
and, in some applications, additionally periodic bound-
ary conditions. In this paper, for reasons of simplicity,
we restrict ourselves to pure Dirichlet boundary condi-
tions, since the additional periodic boundary condition
are of no numerical difficulty. Such a Poisson problem
can be described as follows:

−�u = f on Ω, (1)

u = 0 on ∂Ω, (2)

where Ω ⊂]0, 1[3 is a bounded domain.

In case of the pure rectangular domain Ω =]0, 1[3, one
can apply trilinear finite elements on the discretization
grid

Ωh = {(ih, jh, kh) | i, j, k = 0, 1, · · · , N = 1/h},
where N = 2n, n ∈ N , is the solution uh of the differ-
ence equation

27Uh(x, y, z) −
∑

l,m,n∈{−1,0,1}
Uh(x + lh, y + mh, z + nh) (3)

= Fh(x, y, z) for all (x, y, z) ∈ Ωh (4)

Uh(x, y, z) = 0 for all (x, y, z) ∈ Ωh\Ωh, (5)

Ωh = Ωh∩]0, 1[2 denotes the interior grid points and
Fh(x, y, z) is a suitable scaled local average of the right
hand side f . For simplicity, let us denote

Lh(Uh)(x, y, z) = −27Uh(x, y, z) + (6)
∑

l,m,n∈{−1,0,1}
Uh(x + lh, y + mh, z + nk). (7)

the discrete Laplace operator.

SEMI-UNSTRUCTURED GRID

The use of such a structured grid Ωh has several ad-
vantages in comparison to a pure unstructured grid.
One of them is the small storage requirement, since
the discretization stencil is a fixed stencil independent
of the grid point. Other advantages are the supercon-
vergence of the gradient and the natural construction
of coarse grids. To be able to discretize more gen-
eral domains, we apply so called semi-unstructured or
embedded structured grids. These grids consist of a
large structured grid in the interior of the domain and
an unstructured grid, which is only contained in bound-
ary cells. A detailed description of semi-unstructured
grids for general domains in 2D and 3D is given in [2].
Here, we describe only the main properties of semi-

Fig. 1: Semi-unstructured grid.

unstructured grids. A semi-unstructured grid genera-
tion is based on the structured grid Ωh, and leads to
the following objects:

• All cells [lh, (l+1)h]×[nh, (n+1)h]×[mh, (m+1)h],
l, n, m = 0, · · ·N − 1 are classified in

– interior cells,

PSI - Scientific and Technical Report 2003 / Volume VI

57

– boundary cells,

– exterior cells.

The boundary of Ω cuts the boundary cells. This
cut is approximated by triangles for every bound-
ary cell. The union of all these triangles and all
interior cells is the discretization domain Ωh.

• The semi-unstructured grid is the set of nodal
points

Nh := Nh,i ∪ ∂Nh,

where ∂Nh are the boundary nodal points and
Nh,i ⊂ Ωh are the interior nodal points. The
boundary nodal points are constructed in such a
way that every boundary nodal point p ∈ Nh is
contained in the interior of an edge of a boundary
cell.

To obtain a finite element discretization on the grid Nh

let Vh be the space of linear elements.

Several advantages of the structured grid Ωh still re-
main for the semi-unstructured grid Nh. One of them
is the low storage requirement, since the discretization
stencils of the structured grid are constant. Another is
the natural construction of coarse grids up to a very
coarse grid. Such constructions are important for ob-
taining an optimal multilevel iterative solver. Further-
more, the structured grid inside of the domain leads to
a local super-convergence of the gradient.

The Gradient Operator

To obtain an accurate approximation of the gradient of
u, we apply a finite element approach using a weak
formulation. To explain this approximation let Vh be the
finite element space. Then, define the approximation of
the gradient δh(u) ∈ Vh as follows

∫

Ω

∂u

∂x
vh =

∫

Ω

δh(u) vh dx (8)

for all vh ∈ Vh.

Particle Grid-Interpolation

Let Vh be the finite element space, the space of piece-
wise linear functions on the discretized grid Ωh. The
operator I is defined by:

I : Ωh �→ 	

I(q) =
∫

Ω

N∑

i=1

δ(xi − x)vq,h(x)d(x)
(9)

where vq,h ∈ Vh are finite element base functions to
q ∈ Ωh. xi ∈ Ω represents one particle with unit charge
in real space.

EFFICIENT PARALLELIZATION

An automatic parallelization of a code can only be
achieved if the code is implemented in a suitable lan-
guage. Such a language can be provided by expression
templates in C++. Using expression templates, one can
implement operators like +,-, ... in such a way that ex-
pressions like

u = a+b+c;

are evaluated in an efficient way for vectors a,b,c. The
main idea of this concept is to implement the operator
+ such that a+b does not return the resulting vector,
but a template object which is able to evaluate a+b
efficiently for every component of the vector. This
idea was originally proposed in [3], and allows C++ to
achieve the same performance on vector and matrix
expressions as with Fortran.

The expression template concept can also be extended
to solvers for finite element discretizations. Of course,
in this case, one needs a more complicated data struc-
ture for storing the vectors on a discretization grid. Let
us call such vectors Variable. Then, the Jacobi itera-
tion and the Gauss-Seidel iteration

Jacobi iteration for Poisson’s equation
void Smoother(Variable& u, Variable& f, Variable& r)
{

r = f + Laplace FE(u);
u = u - r ω;

}

Gauss-Seidel iteration for Poisson’s equation
void Smoother(Variable& u, Variable& f, Variable& r)
{

u = u - Laplace FE(u) - f;
}

Fig. 2: One Jacobi and Gauss-Seidel iteration

for Poisson’s equation can be implemented almost
identical to the mathematical formulation. A very nice
feature of expression templates not only for pedagog-
ical reasons. Here Laplace FE(u) means the discrete
Laplace operator Lh (6) for a finite element discretiza-
tion.

THE MULTIGRID SOLVER

A multigrid algorithm [4] to solve the linear system of
equations resulting from the (FEM) discretization of Ω
and the corresponding operator (6) is based on a se-
quence of fine and coarse grids

Ωh1 ⊂ Ωh2 ⊂ Ωh2 ⊂ · · · ⊂ Ωhn (10)

and restriction and prolongation operators

Rhi : Ωhi+1 → Ωhi

Phi : Ωhi−1 → Ωhi .
(11)

PSI - Scientific and Technical Report 2003 / Volume VI

58

Multigrid Algorithm
void MG(Variable& u, Variable& f, Variable& r,
int level) {

if(level > 1) {
Smoother(u,f,r); // pre-smoothing
// restriction
r = Laplace FE(u) - f;
f = Restriction FE(r);
u.Level down();
u = 0.0;
// coarse-grid correction
MG(u,f,r,level-1);
u = u + Prolongation FE(u);
f.Level up();
Smoother(u,f,r); // post-smoothing

}
else { // smoothing on coarsest grid

Smoother(u,f,r);
}

}

Fig. 3: Multigrid algorithm

Restriction and prolongation has to be applied to
FEM-spaces and to the differential operators from fine
to coarse grid (and vice versa). Depending on the
grid and the operator additional structures must be
provided.

In case of the uniform structured grid Ωh one can geo-
metrically construct the coarse grid as follows:

Ωhi := Ωh2n−i .

In case of an unstructured grid, the construction of
coarse grids is a non-trivial task, since one has to ap-
ply an algebraic coarsening. But since Nh,i is a semi-
unstructured grid and since the boundary conditions
are Dirichlet and periodic boundary conditions, we can
construct coarse grids as follows:

Ωhi := Ωh2n−i ∩ Nh,i.

For the implementation of the multigrid algorithm, the
concept of activity of points (arising in the context of ex-
pression templates) has to be extended to the concept
of activity of levels. Expressions are evaluated only on
the grid Ωhi , where i is the active level of this expres-
sion. In order to change the activity level operators like
Level down() or Level up() are implemented and used
as shown in Fig 3.

PERFORMANCE RESULTS

For the Poisson solver the type of simulations de-
scribed in [1] is very demanding. First of all, the
computational domain Ω is very large and almost
completely filled with simulation particles (protons and
electrons). Second, the number of macro particles (or
simulation particles) is huge (many times 106) and the
number of time steps is large as well.

Performance results of the parallel Poisson Solver and
the parallel grid generators is shown in Table 1 for a
toy Poisson problem where Ω = S3 (sphere). We show
in Table 1 the scalability of the grid generator and the
solver. A method is said to be scalable, if the time (T)
times the number of processors used (P) divided by
problem size (M) remains bounded as P and M get
increased. The data in Table 1 is given for the grid
generation (in column 3) and for one multigrid iteration
(in column 5) with an Gauss-Seidel smoother. Table 1
shows excellent scalability with respect to the problem
size M which is equivalent to say we can handle in the
order of 1011 macro particles in a simulation with rea-
sonable computing time. For this scaling study we use
the Seaborg (IBM SP-3) computer at NERSC.

P M TgP/M T TP/M

8 625,464 3.5e-3 3.1 3.9e-5
32 306,080 8.5e-3 0.78 8.1e-5
248 4,751,744 5.90e-3 1.2 6.2e-5
248 36,998,619 7.50e-3 7.7 5.1e-5
960 23,312,735 4.85e-3 4 1.64e-4
2025 405,242,845 6.60e-3 10.7 5.3e-5
4075 7,166,171,845 8.76e-3 160 9.9e-5

Tab. 1: Scalability of the parallel grid generator TgP/M
and the Poisson solver showing also T , the time in sec-
onds for one Multigrid step

CONCLUSION

A novel massive parallel Poisson solver Kernel is pre-
sented. Scalability of the grid generator and the solver
is demonstrated up to 4075 processors. Next steps are
the integration of the solver in beam dynamic simulation
programs and improve the sustained performance.

ACKNOWLEDGMENTS

A.A acknowledges the used resources of the NERSC,
which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC03-
76SF00098.

REFERENCES

[1] Andreas Adelmann and M. A. Furman , PARSEC:
Parallel Self-consistent 3D Electron-Cloud Simula-
tion in Arbitrary External Fields, PSI Annual Report
2003.

[2] Christoph Pflaum, Semi-unstructured grids, Com-
puting, 67(2):141-166, 2001

[3] T. Veldhuizen, Expression templates, C++ Report,
7(5):26-31, 1995

[4] U. Trottenberg, C.W. Oosterlee, A. Schüller, Multi-
grid, Academic Press 2001s, ISBN 0-12-701070-X

PSI - Scientific and Technical Report 2003 / Volume VI

