
59

COMMUNICATION PERFORMANCE OF PARALLEL 3D FFTS USING VARIOUS
NETWORKS AND TRANSPOSITION ALGORITHMS

A. Adelmann, A. Bonelli1 W. P. Petersen2, C. W. Überhuber1

Vienna University of Technology1, ETH Zurich2

This contribution deals with empirical investigations of the behavior of communication-time to computation-
time ratios of three-dimensional parallel Fast Fourier Transforms (FFTs). Different problem sizes, number of
processes, as well as different types of communication structures such as: Ethernet, Fast Ethernet, Myrinet,
and IBM SP Switch are considered. Preliminary results are given on algorithms developed at the Vienna
University of Technology, the Paul Scherrer Institut, and at the ETH Zurich. All the transposition algorithms
of this study were implemented in MPI, and are thus portable. Performance on specific network topologies
therefore reflects the efficiency of these MPI implementations.

INTRODUCTION

FFTs are well known as tools for solving many com-
putational problems. In particular, they are often used
in solving partial differential equations. Among the
many overview articles available, we recommend to
interested readers a superb article by Henrici [6].

In the beam dynamic context, FFTs are used to solve
the Poisson problem for a scalar Coulomb potential φ,
from which the particle forces may be computed at each
time step. This is done be solving a related integral
equation for φ, namely

φ(�q) =
∫

Ω

G(�q − �q′) ρ(�q′) d�q′, Ω ⊂ R3 (1)

where �q is any point in space, G is Green’s function, and
ρ is the charge density. After discretization, the com-
plexity of solving this equation is O(M2) where M is
proportional to the problem size (number of grid points.)
The convolution of Green’s function with the charge
density is computed by using the Conlvolution theorem,
first by Fourier transforming the two quantities (G and
ρ), computing the Hadamard product in �k−space,
then inverse Fourier transforming the product. This
gives a much more efficient algorithm of complexity
O(M log M). In three dimensions, an efficient parallel
implementation of the discrete Fourier transform (as
FFT) further enhances the performance of this proce-
dure, see for example [1] and [7].

Our first concern is a three dimensional FFT on a cube.
For 0 ≤ p, q, r < n, the transformation can be written:

yp,q,r =
n−1∑
s=0

n−1∑
t=0

n−1∑
u=0

ω±(ps+qt+ru)xs,t,u (2)

where n = 2m (binary radix) and ω = e
2πi
n is the n−th

root of unity. One dimension (z) is distributed as slabs
over multiple processors.

The FFT computation on each component (G and ρ)
in equation (1) is performed in three steps: first by the

independent rows, then the independent columns

∀s, t : Z
[1]
s,t,r =

n−1∑
u=0

ωruxs,t,u

∀s, r : Z [2]
s,q,r =

n−1∑
t=0

ωqtZ
[1]
s,t,r

∀q, r : yp,q,r =
n−1∑
s=0

ωpsZ [2]
s,q,r.

Since the z−directional data are distributed across pro-
cessors, a data transpose must be performed to redis-
tribute the z−direction vectors so that each vector is
resident in local memory. In effect, the transpose is two
dimensional, with the third dimension y forming pencils
out of 2-D x − z blocks within the slabs. A more de-
tailed discussion of the transposition algorithm is given
in [1]. Using the MPI command MPI Sendrecv replace,
non-diagonal blocks are exchanged using an exclusive
or exchange address computation. Every block, which
is locally CPU memory resident, is then transposed. To
preserve the input x, y, z order, this transpose is done
twice: to do the z−direction, then inverse transposed
back to the original order. The whole of the input data
are replaced with the un-normalized transform in equa-
tion (1).

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X−direction FFT Y−direction FFT Z−direction FFT

Transpose Transpose

Original Data
Distribution

Fig. 1: Data distribution during the 3 steps

The aim of this paper is an analysis of the
communication-time to computation-time ratio of these
3–D FFTs. Different FFT Kernels, problem sizes,
and number of processors are studied on various ma-
chines. We are particularly interested in how the
communication-computation time ratio changes on dif-
ferent systems and topologies.

PSI - Scientific and Technical Report 2003 / Volume VI

60

NUMERICAL EXPERIMENTS

The Machines under Study

Experiments have been carried out on the following ma-
chines:

Asgard is a 500 processor Linux Cluster installed at
ETH Zürich. The computing nodes are dual pro-
cessor Pentium III Boards, each having 1 GB
of memory. Some 192 Nodes have 500 MHz
clocks and while 48 others have 650 MHz pro-
cessors. A frame consists of 24 nodes connected
by 100 MBit/s Ethernet Switches. The 10 frames
of the system are connected to each other and to
service and file server nodes by 1 Gbit/s optical
links.

Seaborg is a large IBM RS/6000 SP-3 machine at the
National Energy Research Scientific Computing
Center (NERSC). It has 380 Compute Nodes for
a total of 6080 CPUs. These nodes each have
between 16 and 64 GB of memory and 166 IBM
Power3 375 MHz Processors. Seaborg’s network
is the IBM Colony system having two GX Bus
Colony network adapters per node.

Alvarez is a Linux cluster at NERSC with 80 two way
SMP Pentium III nodes. The Alvarez network is
Myrinet 2000.

zBox is a machine constructed at the University of
Zürich. It has 144 dual AMD Athlon-MP 2200+
(1.8 GHz) nodes for 288 CPUs. The network is
an SCI 2-dimensional 12×12 torus.

A summary of important data characterizing the net-
works is compiled in Table 1 .

Tab. 1: Network parameters.

Network latency pt.-pt. rate
Ethernet 175 µs 10 Mbit/s
Fast Ethernet 175 µs 100 Mbit/s
Myrinet 6 µs 3.9 Gbit/s
SCI (Scali) 5-6 µs 5.3 Gbit/s
Infiniband 2 µs 10-30 Gbit/s

The FFT Routines

The FFTs we tested are:

• FFTW [3]

• POOMA r1 [5]

• wpp3DFFT uses a generic implementation of
Temperton’s [2] in-place algorithm for the case
n = 2m.

The Process of Measurement

Measuring timing is not entirely trivial. Because the
various machines used have different operating system
parameters, codes must be instrumented in several
ways to check consistency. One basic timer uses
the clock routine provided in sys/times.h. Others use
the MPI wallclock timer MPI Wtime and the familiar
command line system timer time.

Our experiments have running times between approxi-
mately 10−3 and 102 seconds. To assure consistent tim-
ing data, even for the very short runs, enough repeated
forward/back transforms are performed to find a con-
sistent average timing for one transform. This method
is less sensitive to timer resolution. We measure wall-
clock time, system time, and user time.

PRELIMINARY RESULTS

Different FFTs show quite similar results if the number
of processes is around the optimum for a given prob-
lem size (Fig. 2). On the other hand, if too many pro-
cessors are designated for a certain problem size, the
performance deteriorates because more communica-
tion is necessary. FFTW allows tuning for that and does
not use all designated processors (see flat FFTW-graph
between 128 and 256 processors in Fig. 2).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 2 4 8 16 32 64 128 256

R
ea

lti
m

e
[s

ec
s]

Processes

wpp3DFFT
FFTW

POOMA r1

Fig. 2: Runtimes on Seaborg

Of particular interest to us is the ratio

r =
communication time

total runtime
× 100. (3)

More precisely, communication time is the time for
the two matrix pencil transpositions including local
transposes. The computation time is the remainder of
the total 3–D FFT time.

Our basic transpose operation is a simple case of ma-
trix transposition. Few communication problems are in
principle easier, but in practice more difficult to perform
effectively. Both the linear systems software ScaLA-
PACK [4] and FFT package FFTW [3] require a variety
of such transpositions. As shown in Fig. 3, the ration r
varies considerably between the FFTs tested.

PSI - Scientific and Technical Report 2003 / Volume VI

61

 0

 20

 40

 60

 80

 100

 2 4 8 16 32 64 128 256

r
=

 c
om

m
. /

 c
om

p.

Processes

wpp3DFFT
fftw

pooma

Fig. 3: r on Seaborg

Pooma spends a lower percentage of the execution
time in the transpose function. The reason for this is
that the communication time and the overall runtime for
a small number of processors is higher than those of
the other routines. The times spent in transpose func-
tions (Fig. 4) show that pooma’s transpose implementa-
tion is faster than the others but not as dramatically as
r (3) indicates. Additionally, it is only faster on a large
numbers of processors.

 0
 0.005

 0.01
 0.015

 0.02
 0.025

 0.03
 0.035

 0.04
 0.045

 2 4 8 16 32 64 128 256

T
ra

ns
po

se
 R

ea
lti

m
e

[s
ec

s]

Processes

wpp3DFFT
FFTW

POOMA

Fig. 4: Communication time on Seaborg

FFTW obviously has a very good implementation of the
computation part. It is the fastest of the tested FFTs
for small numbers of processes. The reason of this
is probably that FFTW uses a planner-function which
optimizes the algorithms used. For larger numbers
of processors, the times become worse than its com-
petitors. That seems to indicate that its transposition
implementation has some tuning potential.

These results differ widely between tested machines
as they have different network- and CPU-performance.
Fig. 5 shows the r-values (3) for wpp3DFFT on some
of the tested machine-configurations. More detailed re-
sults and conclusions will be published elsewhere [8].

 0

 20

 40

 60

 80

 100

 2 4 8 16 32 64 128 256

r
=

 c
om

m
. /

 c
om

p.

Processes

seaborg
zbox

asgard lam
alvarez pgi gm
alvarez gcc ip

Fig. 5: r on chosen Machine configurations for
wpp3DFFT, problem size = 256

REFERENCES

[1] W. P. Petersen and P. Arbenz, Introduction to Paral-
lel Computing, Oxford University Press, 2004.

[2] C. Temperton, Self-sorting In-place Fast Fourier
Transforms, SIAM J. Scientific and Statistical Com-
puting, vol. 12, pp. 808-823, 1991.

[3] M. Frigo and S. G. Johnson, Fast Fourier Trans-
forms in One or More Dimensions, available from
NETLIB or http://fftw.org.

[4] L. S. Blackford et al., ScaLAPACK Users’
Guide. SIAM Books, 1997, available from
http://www.netlib.org/scalapack/.

[5] J.C. Cummings and W.F. Humphrey, Parallel Parti-
cle Simulations using the POOMA Framework, 8th
SIAM Conf. Parallel Processing for Scientific Com-
puting, 1997

[6] P. Henrici, Fast Fourier methods in computational
complex analysis, SIAM Rev. 21 (1979), 481-527.

[7] Alan Edelman, Peter McCorquodale and Sivan
Toledo, The Future Fast Fourier Transform, SIAM
J. Sci. Comput. 20(3) (1999), 1094-1114

[8] A. Bonelli, A. Adelmann, W. P. Petersen and
C. W. Überhuber, Communication Performance of
Parallel 3D FFTs Using Various Networks and
Transposition Algorithms accepted for presentation
at VECPAR-04

ACKNOWLEDGMENTS

One of the authors (A.A) acknowledges the used re-
sources of the National Energy Research Scientific
Computing Center, which is supported by the Office of
Science of the U.S. Department of Energy under Con-
tract No. DE-AC03-76SF00098.

PSI - Scientific and Technical Report 2003 / Volume VI

