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PARSEC: PARALLEL SELF-CONSISTENT 3D ELECTRON-CLOUD SIMULATION IN
ARBITRARY EXTERNAL FIELDS

A. Adelmann and M. A. Furman 1

LBNL, Berkeley 1

We present PARSEC, a 3D parallel self-consistent particle tracking program which allows electron-cloud
calculations in arbitrary external fields. The Lorentz force equation is integrated with time as the independent
variable. A 3D parallel Multigrid solver computes the electric field for the drive beam in the beam frame, while
the space-charge field of the electrons is computed in the lab frame. The resulting total field, obtained by
superposition, acts on both the beam particles and the cloud electrons. Primary and secondary emission
takes place at each time step of the calculation. This sort of computation is only possible by the use of
massive parallelization of the particle dynamics and the Poisson solver.

INTRODUCTION AND MOTIVATION

The electron-cloud effect (ECE) has been investigated
in various storage rings for several years now. The
ECE arises from the strong coupling of a two-species
plasma with the surrounding vacuum chamber. Sev-
eral analytical models and simulation programs have
been developed to study this effect [1]. Owing to the
complexity of the problem, these simulation codes
typically make one or more simplifying assumptions,
such as: (i) the electrons are dynamical but the beam is
a prescribed function of space and time; (ii) the beam
is dynamical but the electron cloud is a prescribed
function of space and time; (iii) both the beam and the
electrons are dynamical, but the electron-wall interac-
tion, particularly the secondary emission process, is
either absent or much simplified; (iv) the geometry of
the beam and/or vacuum chamber is much simplified
(eg. round beams and/or cylindrical chambers); (v)
the simulation “looks” at only one specific region of the
machine, typically a field-free region or one magnet
of a specific kind; (vi) the forces on the particles,
both from, and on, the electrons and the beam, are
purely transverse. Computer codes involving these
approximations, when applied in the proper context,
have shed valuable information on one or more aspects
of the ECE.

There are problems, however, in which any of these ap-
proximations may render the reliability of code inade-
quate for a quantitative understanding of the dynam-
ics. One such example concerns problems involving
very long, intense, bunches with significant variation in
the longitudinal profile, which require a self-consistent,
fully 3D simulation, including a full description of the
storage ring lattice (or at least, a section of the lat-
tice at least as long as the bunch). Another example
might be the simulation of damping rings for future lin-
ear colliders, which make significant use of wigglers.
In this article we report on progress towards the goal
of a fully self-consistent and realistic simulation of the
ECE which, in its final stage, will not invoke any of the
above-mentioned simplifications.

THE OVERALL SIMULATION MODEL

Self-consistent formulation

Let the particle coordinates of particle k be �xk =
(q1, q2, q3)k, and the normalized velocity be �βk =
(vx/c, vy/c, vz/c)k where c is the speed of light (all
quantities in MKS units unless explicitly stated other-
wise). We consider � = 1, 2, · · · magnetic elements
which make up what is called the lattice L. Defin-
ing I = {1, 2, · · · } and J = {1, 2, · · · } the index sets
for the beam particles and electrons, respectively as
unique identifiers, we are able to distinguish beam par-
ticle (i ∈ I) and electron coordinates (j ∈ J) in a natural
way (see Figure 1 as an illustration). For each particle
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Fig. 1: (color) Geometry and Particle domains.

k ∈ I ∪ J we solve formally

d(mkγkc�βk)
dt

= �F (�xk, t) (1)

�F (�xk, t) =
qk

γkmk
( �E(�xk, t) + �βk × �B(�xk, t)) (2)

where mk and qk are the mass and charge of the parti-
cle, respectively, and γk its usual relativistic factor.
The lattice magnetic field �Bext in cylindrical coordinates
is represented by:

Bρ =
∑

cm,nI ′m(nkzρ) sin(mφ) cos(nkzz)

Bφ =
∑

cm,n
m

nkzρ
Im(nkzρ) cos(mφ) cos(nkzz)

Bz = −
∑

cm,n
m

nkzρ
Im(nkzρ) sin(mφ) cos(nkzz).

(3)
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where In is the usual modified Bessel function, which
satisfies I ′

m(nkzρ) = 1
2 [Im−1(nkzρ) + Im+1(nkzρ)]. In

this formulation we will treat coasting beams only al-
though it is straightforward to include acceleration. The
potential φ is obtained by solving two Poisson problems
with ρe(�xj) and ρb(�xi) the electron and beam charge
density. Let �x′

i = L(�xi) with L denoting the proper
Lorentz transformation from the laboratory to the beam
rest frame. The first Poisson problem, in which the
beam charge density ρb is the source, reads:

�φ(�x′
i) = −ρb(�x′

i)
ε0

, �x′
i ∈ Ω ⊂ R3

φ(�x′
i) = 0, �x′

i ∈ ∂Ω.

(4)

Upon Lorentz-transforming back to the Lab frame,
this yields both an electric (�Eb) and magnetic field
( �Bb). Assuming that the electrons are sufficiently non-
relativistic, which is typically a good approximation, we
can neglect their contribution to the magnetic field, and
we can solve in the laboratory frame for the second
Poisson problem, in which the electron-cloud density
ρe is the source,

�φ(�xi) = −ρe(�xi)
ε0

, �xi ∈ Ω ⊂ R3

φ(�xi) = 0, �xi ∈ ∂Ω
(5)

thus the full answer is obtained by superposing the two
fields:

�F (�xk, t) =
qk

γmk
( �Ee(�xj , t) + �Eb(�xi, t) +

�βk × ( �Bext(�xk, t) + �Bb(�xj , t)))
(6)

where �Ee is the electric self-field of the electrons.

Secondary Emission Model

When an electron strikes the vacuum chamber wall, it
can be absorbed or can generate one or more sec-
ondary electrons. In our computations we simulate
this process by a detailed probabilistic described else-
where [2]. This process incorporates, as inputs, the
measured secondary electron yield (SEY) δ and the
energy spectrum of the emitted electrons, dδ/dE for
a given vacuum chamber surface material. The three
main subprocesses, namely elastic reflection, rediffu-
sion, and true secondary emission, are included. We
are not concerned for the moment with the detailed pro-
cesses responsible for the generation of primary elec-
trons, chiefly the photoelectric effect, ionization of resid-
ual gas, and stray beam particles striking the vacuum
chamber wall; rather, we simulate these processes with
simple phenomenological probabilistic models.

Time integration

The code integrates (1) using a 4th-order Runge-Kutta
method, with adaptive time step control for the elec-
trons. We estimate the time step Tj by considering the
cyclotron frequency ωc = eB/me, consequently

Tj =
2π

ωcK
. (7)

is defined upon the factor K. Defining εmin and εmax

the minimum and maximum error tolerated we estimate
K using two Runge-Kutta steps and Richardson Ex-
trapolation [3]. Choosing an initial step size Tj by set-
ting K = 1 and let u1 be the result of a Runge-Kutta
step of length Tj. Let u2 be the result of two subsequent
Runge-Kutta steps of length Tj/2. We then estimate
the error by ε = |u1 − u2|. Richardson Extrapolation is
then used to set K corresponding to a predefined error
range. This procedure will guarantee the minimal work
necessary to achieve a desired accuracy, considering
the dynamics of the individual particle.

Particle Tracking Procedure

As a first step towards a full lattice simulation, we model
a portion of the magnetic lattice by imposing periodic
boundary conditions in the z coordinate, for example
one half of the PSR circumference or one FODO cell
of the LHC arc. Further, we assume a constant num-
ber of particles in the drive beam, and a fixed number
N of time steps of size ∆T . All electrons i ∈ I and
protons j ∈ J are advanced by N∆T followed by a
space-charge calculation. The required Poisson solver
is described elsewhere in this annual review.

CONCLUSION

The presented code PARSEC is based on GenTrackE,
which is written in C++ and is fully parallelized using
MPI. PARSEC advances the macro particles of the
drive beam and the electrons using a 4th-order Runge-
Kutta method. Variable time steps for the electrons
according to their dynamics are used. The arbitrarily
shaped computational domain is discretized using
linear finite elements, and the resulting linear system of
equations is solved efficiently by the use of a massive
parallel and scalable Multigrid solver.

We are finalizing the code construction and are about to
start simulation of a simplified LHC FODO cell, as well
as a section of the Los Alamos proton storage ring. The
issue of large aspect ratios in the computational domain
and the impact of the accuracy of the Poisson solver will
be investigated in detail, as this is a subject which is of
general importance in many space-charge dominated
problems.
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