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EFFICIENT CALCULATION OF EIGENMODES USING FEMAX++

R. Geus

PyFemax is a simulation tool being developed at PSI for computing eigenmodes of large RF structures. In
2003, additional functionality was added: the calculation of the Q-value, the implementation of first order
edge elements and the integration of the LOBPCG eigensolver. Due to performance bottlenecks in the
Python code of PyFemax, the application was rewritten from scratch in C++. The new code, Femax++,
performs substantially better in large simulations, typically reducing simulation times by 50%. The parallel
version of Femax++, whose development has started in December 2003, will enable PSI to run much larger
simulations on a variety of parallel machines.

INTRODUCTION

PyFemax is a simulation tool for computing eigen-
modes of large RF structures [3]. It is the result of
an ongoing collaboration of PSI and the Institute of
Computational Sciences at ETH Zürich. PyFemax
uses unstructured tetrahedral grids and Nédélec finite
elements to discretise Maxwell’s equations. Several
algorithms dealing with spurious modes are incor-
porated. The Jacobi-Davidson algorithm (JDSYM) is
used for computing selected eigenpairs of the resulting
large sparse symmetric eigenvalue problem. PyFemax
offers some visualisation and postprocessing features.

PyFemax is implemented using the Pythonic ap-
proach [2], a combination of the interpreted Python
programming language and the C programming lan-
guage.

PyFemax has been successfully used to compute
a few of the lowest eigenmodes of both the COMET
cyclotron and the new PSI ring cyclotron cavity [4].
PyFemax is able to deal with large problems involving
over eight million degrees of freedom.

At PSI PyFemax (and its successor Femax++)
will be used complementarily to commercial tools like
ANSYS, Microwave Studio and HFSS in cases where
those tools cannot provide satisfactory results or when
special customisation is required.

NEW FEATURES IN PYFEMAX

Recent experiments with box–shaped and cylindrical
cavities (for which analytical solutions are known) have
indicated that second order finite elements only yield
the expected convergence behaviour if the tetrahedral
mesh can represent the RF structure accurately.
With the presence of curved boundaries however
the favourable properties of second order elements
are lost. To address this issue, first order Nédélec
elements were implemented in PyFemax. These finite
elements can provide a more economical alternative
for complicated RF structures.

PyFemax’s postprocessing features have been
upgraded. A long requested feature for assessing the
power loss in a cavity, the calculation of the quality
factor, has been implemented. The main part of this

computation is the evaluation of the surface integral

I =
∫∫

∂Ω

curl2 E ds. (1)

To this end we sum the analytically calculated integral
contributions of all surface triangles of the tetrahedral
mesh. We validated our implementation using the
analytic box case and also by comparison with quality
factors computed by ANSYS.

Finally, the LOBPCG eigensolver [6] was incorporated
into PyFemax as an alternative to the Jacobi-Davidson
algorithm. In our experiments [1] both solvers per-
formed roughly the same. However, in a parallel
context we expect LOBPCG to scale better than
JDSYM.

THE NEW C++ IMPLEMENTATION: FEMAX++

When solving large problems involving several million
DOFs, some performance bottlenecks in PyFemax be-
came apparent. In particular, all mesh handling rou-
tines used in pre- and postprocessing were slow since
the mesh data structures were implemented in Python.
Instead of specifically optimising these critical sections
in PyFemax, we decided to rewrite the program from
scratch in C++ using an object–oriented programming
style. This strategy offers several advantages:

• All Python related performance bottlenecks are
removed.

• The Standard Template Library (STL), which is
available for all modern C++ compilers, allows to
port high–level Python data types like lists and
dictionaries easily.

• The integration of Fortran 77, C and C++ libraries
is straight–forward.

• C++ allows for a smoother transition to the
planned parallel version than Python.

The code handling the tetrahedral mesh has been
completely redesigned for Femax++. The old data
structures which were implemented using several
separate arrays holding e.g. coordinate data, mesh
geometry and boundary condition information were
replaced by a hierarchy of C++ classes. These classes
represent points, edges, faces, tetrahedra and meshes.
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The new data structure is much easier to extend, e.g.
by new attributes or by new finite element types. The
data structure now stores neighbour information (each
tetrahedron knows its neighbour tetrahedra) which will
be used to devise efficient algorithms for locating the
tetrahedron associated with a given location (x, y, z).
This functionality is fundamental for evaluating the
computed eigenmodes at arbitrary locations in the
cavity. Apart from these modifications, the program
structure of PyFemax was only refined slightly. Major
parts of the C and Python code could be refactored
into the new C++ program in an efficient way. The
rewriting process took less than 4 months.

As wrapper generation tools like SWIG, SIP,
Boost.Python or Babel have dramatically improved
over the last two years, it is now possible to generate
a Python API layer for the new C++ program with only
very little manual coding. We will use this technol-
ogy to provide a convenient computational steering
mechanism at a later stage.

PyFemax Femax++
teig tproc teig tproc

cop10k 273.6 50.0 117.2 8.6
cop40k 2083.0 290.6 1115.8 70.8
box60k 2618.0 520.7 941.0 46.5
box170k 9064.6 2381.0 3343.1 114.4
cop300k 32598.1 6098.0 20977.5 513.6

Tab. 1: Simulation times for PyFemax and Femax

Tab. 1 shows simulation times (measured in seconds
on the HP superdome stardust at ETH Zürich) for sev-
eral discretisations of PSI ring cyclotron cavities using
both PyFemax and Femax++. In this experiment the
five lowest eigenmodes were computed to an accuracy
of 10−6. The solution times teig are 35%–65% smaller
for Femax++. The improvement is even more dramatic
for the pre- and postprocessing phase: the execution
times tproc are typically reduced by a factor of 10. For
the largest grid with 300’000 second order finite ele-
ments the overall improvement is almost 50%.

PARALLELISATION

The parallelisation of Femax++ using the message–
passing paradigm is the next major goal of this project.
The development has started in December 2003. With
the new parallel Femax++ code, much larger problems
in the order of several tens of millions DOFs can be
tackled. The parallel code will run on a wide variety
of computers. The primary target architecture are
workstation clusters, but the code will also support
single processor mode and can run on large shared
memory computers.

Femax++ uses the object-oriented software framework
Trilinos, which is being developed at Sandia National
Laboratories [5]. Trilinos provides parallel solver
algorithms and libraries for the solution of large-scale,

complex multi-physics engineering and scientific ap-
plications. Although Trilinos and the existing code
in Femax++ have some overlapping functionality we
expect a great reduction of development time from the
use of Trilinos, since it provides distributed vector and
matrix data structures and a large number of parallel
solvers and preconditioners. Trilinos is still under active
development and thus further improvements can be
expected.

OUTLOOK AND CONCLUSIONS

The added functionality is an important step towards
production use of PyFemax/Femax++. By rewriting the
code in C++, we successfully removed the performance
bottlenecks of PySparse, resulting in a overall runtime
improvement of 50% for large simulations. The rewrit-
ten program is also easier to parallelise. We expect to
deliver a first running version of parallel Femax++ with
limited functionality in March 2004. Benchmarks will
then be conducted to asses the scalability of our code
and the Trilinos library on several parallel machines.
Problematic program sections will then be optimised
for the parallel environment. Once the prototype deliv-
ers satisfactory performance, the missing functionality
(mainly postprocessing) will be merged to the parallel
code. Later additional functionality, like e.g. the calcu-
lation of the gap voltage, will be implemented.
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