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REVIEW OF THE ROBINSON-STABILITY FOR THE RING-CYCLOTRON CAVITIES

L. Stingelin, J. Cherix, M. Humbel, G. Rudolf

INTRODUCTION

The beam-loading model for storage rings was origi-
nally developed by K.W. Robinson [1]. For the case pre-
sented there, all the particle-bunches cross the cavity at
the same location and the same energy, whereas in the
case of the cyclotron they traverse the cavity at different
radial positions and different energies. The knowledge
of the cyclotron cavity-beam transfer function is the key
for Robinson-stability analysis.

MODELLING THE INTERACTION

The action of the particles on the cavity modes can
be calculated by Maxwell’s equations using a mode-
expansion method for the electric field and a Fourier de-
composition of the flying particle bunches. The result-
ing differential equation of e.g. the fundamental mode
is the same as for a lumped resonance circuit excited
by the current source IB , as shown in Fig. 1.
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Fig. 1: RCL equivalence-circuit of cavity fundamental
mode with beam-excitation IB and generator IG.

The contribution to the amplitude of the fundamental
mode at the steady-state condition can be approxi-
mated by the sum over all turns at cyclotron radii rt with
velocity vt and bunch-length σt
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for a cavity with gap-voltage distribution G(rt) and up-
per bound Ĝ, impedance ZC , transit-time correction
T (vt) and long-bunch correction L(σt/vt) for an exci-
tation with mean proton current I0.

CAVITY-BEAM TRANSFER FUNCTION

The cavity-beam transfer function B(s) describes the
effect of a small phase or amplitude modulation of
the cavity voltage VC on the current IB. A numerical
method was used to calculate the variation in particle
position and phase in response to the cavity voltage
modulation.
The particle trajectory was integrated by a fourth order
Runge-Kutta algorithm based on a third order Taylor-
expansion of the static magnetic fields. The initial cavity
voltages were adjusted to be in phase with −IB and
to provide a particle end-energy of 590 MeV after 220
turns.

Zero beam-current trajectories were calculated for dif-
ferent initial phases of the modulation signal, cavity-
crossings were determined and the variation in each in-
teraction contribution (GTLt in Eq. 1) was stored. The
complex Fourier-coefficients were then evaluated for
each interaction and superimposed after being phase
shifted by the delay of the corresponding turn number.
Fig. 2 shows the resulting transfer function of cavity
voltage to current IB in cavity 3. The first bump corre-
sponds to the transit time of the beam in the cyclotron.
The upward trend above 1 MHz is related to the revolu-
tion frequency at the sixth harmonic (8.4 MHz).
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Fig. 2: Transfer function for phase-modulation.

CONCLUSIONS

Although closed-loop measurements of the system
confirmed that no instability appears up to proton-beam
currents of 1.9 mA averaged intensity, the cavity-beam
transfer function could be the key for a future stability
analysis of amplitude and phase control systems [3].
The method also allows calculation of the RF-power
needs for the cyclotron. A comparison with the actually
measured power indicated a deviation from the calcu-
lated value of about 10%. This will be the subject of
further investigation.
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Beschleunigungskavität unter Strahlbelastung, PSI
Internal-Report TM-04-16, 1970.

[3] F. Pedersen, Beam Loading Effects in the CERN PS
Booster, IEEE Trans. Nucl. Sci. Vol. 22, No. 3, 1975.

PSI - Scientific and Technical Report 2003 / Volume VI 


