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ACCURATE PARTICLE TRACKING IN RF STRUCTURES

A. Adelmann, R. Geus, M. Zenon (Summer student from the ETHZ)

We report on a summer student project with the goal to couple the eigenmode solver femaXX with the
particle tracking framework IPL (Independent Parallel Layer) in order to perform self-consistent (in the sense
of paraxial approximation and in the electrostatic limit) particle tracking in RF structures. The Lorentz force
equation is integrated in time and in the Laboratory frame. For the self fields (space charge) a Lorentz
transformation in the co-moving frame allows us to compute the now electrostatic self fields easily [1]. The
numerical solutions are validated using simple analytic test cases. By using femaXX we will be able to model
large and complicated RF-structures accurately and efficiently.

IPL INDEPENDENT PARALLEL LAYER

IPL is a new software framework for 3D multiscale prob-
lems based on particles and has been developed at
PSI. It is fully parallel and aimed at providing a high
level of abstraction. In particular the underlying paral-
lel layer, e.g. MPI (Message Passing Interface), is fully
hidden. The main features of IPL are:

• Particles and particle manager (including ghost
particles)

• Domain decomposition

• Cartesian grids, including semi unstructured grids

• Poisson solver [3]

• Efficient parallel I/O using HDF5 (hierarchical
data format version 5) including checkpoint and
restart features.

FEMAXX

femaXX is a parallel code developed by PSI and the
Institute of Computational Science at ETH Zurich. It is
intended to run very large scale eigenmode, quality fac-
tor and gap voltage computations for complicated RF
structures. femaXX solves the time-harmonic Maxwell
equations using a finite element approach and unstruc-
tured tetrahedral meshes. Nedelec finite elements and
a subspace projection technique are used to avoid
convergence to unwanted eigenmodes. A customised
Jacobi-Davidson eigenvalue solver and a multilevel pre-
conditioner are the main computational tools [2][4].

femaXX is a parallel code for execution on distributed
memory architectures like e.g. workstation clusters. fe-
maXX uses the MPI (Message Passing Interface) stan-
dard for communication between the processes.

COUPLING femaXX AND IPL

femaXX and IPL are two codes that were developed
independently. Their data structures are incompatible
and therefore an interface layer for passing data be-
tween the two codes is needed. For this purpose a
new class CavitySolver has been implemented, provid-
ing the following public member functions:

runSolver Runs the eigenmode computation, steered
by a single hierarchical parameter list.

getECavity Returns the amplitude of the electric field
at an arbitrary location in the cavity.

getBCavity Returns the amplitude of the magnetic
field at an arbitrary location in the cavity.

getLambda Returns the eigenvalue of the computed
eigenmode.

The interface of CavitySolver uses only standard C++
types, i.e. all interfaces of Femaxx are completely hid-
den from IPL. This was necessary to avoid namespace
clashes between the two packages.

Now consider the general Lorentz force equation with
q the particle charge, m0 the rest mass and γ the rela-
tivistic factor

F = γ m0
d�v

dt
= q[ �E + (�v × �B)] (1)

with �E ≡ �Ecav + �Eother and �B ≡ �Bcav + �Bother. Both
the electric and the magnetic field are time and space
dependent. In the above equation, �Ecav and �Bcav are
obtained from femaXX. All other components of the E
and B-field are zero in this particular case. The par-
ticle container of IPL stores the E and B-field of each
particle into two additional vectors. This and a second
order Leap Frog integration scheme constitutes our test
program.

NUMERICAL EXPERIMENTS

We validate our code by tracking a single particle
through a simple rectangular box cavity and compare
the numerical solution with the analytic solution.

The eigenmodes for a box cavity Ω = [0, πa] × [0, πb] ×
[0, πc] are identified by the wave mode indexes kx, ky

and kz, which are all non-negative integers. With given
kx, ky and kz the corresponding eigenfrequency λ is
calculated by: λ = k2

x/a2 + k2
y/b2 + k2

z/c2 and the asso-
ciated eigenfunctions have the form

�E = [0, 0, ez sin(kxx/a) sin(kyy/b)]T . (2)

Note that this particular case holds only when exactly
one wave mode index is equal to zero. Then the elec-
tric field is parallel to a coordinate axis in the entire do-
main Ω. Without loss of generality we assume kz = 0,
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which is exactly the case for the fundamental accelerat-
ing mode. The magnetic field is calculated analytically
by scaling curl(E) appropriately.

The amplitude ez can be chosen freely. It was deter-
mined by taking the normalisation of the electric field

∫
Ω

�E2 dΩ =
∫

Ω

e2
zsin

2(
kxx

a
)sin2(

kyy

b
)dΩ = 1 (3)

into account. The resulting differential equation system
is

d�x

dt
= �v, (4)

γm0

q

d�v

dt
= �E + �v × �B. (5)

To validate the tracking results equations (4) and (5)
were solved using the symbolic algebra program Maple
with appropriate initial conditions for �x and �v.

For the tracking experiment we use a mesh with ap-
proximately 8’700 second order tetrahedral elements,
representing a box-shaped cavity. A single particle with
an initial velocity of roughly 0.4c in z-direction is inte-
grated using a second order Leap Frog scheme. The
particle’s trajectory is off-axis, where the magnetic field
is not zero (except at the initial position).
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Fig. 1: E-Field computed analytically and numerically,
evaluated at particle position.

Figs. 1 and 2 show that the E- and B-fields computed
by femaXX agree well with the analytic solutions. The
differences in the velocity shown in Fig. 3 is mainly
caused by the discretisation error in the eigenmode
computation and the integration error. Exact quantifi-
cation of the errors are subject to further investigations.

CONCLUSIONS AND OUTLOOK

A first step towards self-consistent (in the sense of
paraxial approximation and in the electrostatic limit)
particle tracking in RF structures are done by validat-
ing single particle tracking against analytic solutions.
By considering the general structure of the problem,
namely the time integration of the Lorentz force equa-
tion, it is straight forward to include a more general
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Fig. 2: B-Field computed analytically and numerically,
evaluated at particle position.
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Fig. 3: z-component of particle’s velocity for analytic
and numerical solution.

magnetic field configuration and subsequently use the
developed code in more complicated simulations, e.g.
for Injector 2.
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