
57

PARALLEL EIGENMODE COMPUTATIONS USING FEMAXX

R. Geus

We report on the progress of the development of the parallel eigenmode solver femaXX. This project is
a collaborative effort of PSI and the Institute of Computational Science at ETH Zurich. femaXX is the
parallelised successor of pyfemax and femax++ [4]. It is intended to run very large scale eigenmode, quality
factor and gap voltage computations for complicated RF structures like the one in the COMET cyclotron.

PARALLEL IMPLEMENTATION

femaXX is a parallel code for execution on distributed
memory architectures and uses the MPI (Message
Passing Interface) standard for communication be-
tween the processes, which is supported by all modern
parallel computers.

femaXX uses the same core computational algorithms
as pyfemax and femax++ (Jacobi-Davidson algorithm
and multilevel preconditioner). However the paralleli-
sation for distributed memory machines made it nec-
essary to rewrite femaXX from scratch: the data must
be distributed explicitly over a series of processors and
an efficient parallel implementation of the algorithms is
necessary. Proper distributed data structures and data
layout are required. Parallelised versions of numerical
kernels such as direct and iterative solvers and precon-
ditioners must be integrated. For our project, we found
the Trilinos Project [5] to be a suitable environment to
develop such a complex parallel application.

The Trilinos Project is an ongoing effort to design, de-
velop, and integrate parallel algorithms and libraries
within an object-oriented software framework for the so-
lution of large-scale, multi-physics engineering and sci-
entific applications. Trilinos is a collection of compati-
ble software packages. Their capabilities include paral-
lel linear algebra computations, parallel algebraic pre-
conditioners, the solution of linear and non-linear equa-
tions, the solution of eigenvalue problems, and related
capabilities. Trilinos is primarily written in C++ and pro-
vides interfaces to essential Fortran and C libraries.

For our project, we use the following Trilinos packages
and third party libraries

• Epetra, the fundamental Trilinos package for ba-
sic parallel algebraic operations. It provides a
common infrastructure to the higher level pack-
ages,

• SuperLU DIST, a parallel direct solver for sparse
matrices and its Trilinos wrapper Amesos,

• AztecOO, an object-oriented descendant of the
Aztec library of parallel iterative solvers and pre-
conditioners,

• ML, the multilevel method package, that imple-
ments a smoothed aggregation AMG precondi-
tioner capable of handling Maxwell equations,

• ParMetis, a package for graph partitioning used
for distributing the sparse matrix data across the

processors to minimise the communication vol-
ume and to balance the memory consumption,

• BLAS and LAPACK, basic sequential dense linear
algebra routines.

GAP VOLTAGE CALCULATIONS

In order to calculate the gap voltage between point A
and point B, the curve integral

∫ A

B

E(x)ds (1)

is evaluated along the particle trajectory. Since the tra-
jectory can be arbitrary, the integral is computed nu-
merically. The code must be able to evaluate the elec-
tric field E at any given location x. Thus the tetrahe-
dral finite element containing the point x must be iden-
tified. Since we are dealing with meshes containing
several million tetrahedra it is crucial to have efficient
algorithms and data structures for this task.

We chose to store all tetrahedra in a loose octree. An
octree is a tree in which each node has 8 children. Each
node of the tree corresponds to a cubical region, an oc-
tant. The root node represents a cube containing the
whole mesh. Then, recursively, the eight children of
each node represent the eight sub-cubes of the parent.
In a loose octree, each octant child of the octree actu-
ally overlaps its siblings by a factor of 0.5. The tetrahe-
dra are stored in leaf and node octants. Both the centre
and extent of the bounding box of a tetrahedral element
determine the actual octant storing it.

Given location x, a short list of potential tetrahedra
is obtained by recursively descending the octree and
checking the bounding box of all tetrahedra in each vis-
ited octant. The final tetrahedron is found by properly
testing all potential tetrahedra for containing point x.

The loose octree data structure is very effective. For
a mesh with 1.2 million tetrahedra, only 140 tetrahedra
were visited on average to find the one containing x.
The list of potential tetrahedra contained 8 elements on
average. On a 1.8 GHz AMD Opteron workstation one
such lookup took 440 microseconds on average.

Since the function E(x) has low polynomial order, but
is only piecewise contiguous, we chose the Adaptive
Simpson Quadrature routine adaptsim by Gander and
Gautschi [3] for computing the curve integral (1). We
found adaptsim to be about three orders of magnitude
faster than non-adaptive algorithms like Romberg or the
trapezoidal rule.

PSI - Scientific and Technical Report 2004 / Volume VI



58

Fig. 1: Octree computed for a mesh of the copper cavity
of the 590 MeV cyclotron with roughly 8’600 tetrahedra.
The octree has 512 octants and a maximal depth of 5.

EXPERIMENTAL RESULTS

The following experiments have been conducted on
merlin, the 32 dual node Linux workstation cluster at
PSI. Each node has two AMD Athlon 1.4 GHz proces-
sors and 2 GB main memory. The nodes are connected
by Myrinet, providing a bandwidth of 2 GBit/s.

To assess the parallel scalability of femaXX we com-
pute the five lowest eigenmodes for the copper RF cav-
ity of the 590 MeV cyclotron at PSI. A mesh with roughly
300’000 second order tetrahedral elements is used, re-
sulting in 1.8 million degrees of freedom.

For this calculation the Jacobi-Davidson eigenvalue
solver is used together with a combination of a hier-
archical basis preconditioner and an algebraic multi-
grid (AMG) preconditioner. Both the eigenvalue solver
and the preconditioner are customised to the Maxwell
eigenvalue problem [2].

p t[sec] E(p) nouter navg
inner

8 4346 1.00 62 28.42
12 3160 0.91 62 28.23
16 2370 0.92 61 28.52

Table 1: Time spent in eigensolver, parallel efficiency
and iteration counts for 8, 12 and 16 processors

The results in Table 1 show that, for these experiments,
the iteration counts behave nicely and that efficiencies
stay high.

As a second experiment we compute the lowest five
eigenmodes of the RF structure of the COMET cy-
clotron with varying stem heights. The mesh consists
of 1.2 million first order tetrahedral elements, resulting
in 1.4 million degrees of freedom. We use the AMG
preconditioner (ML) for the entire matrix in this case.

We start the experiment with stem heights of 219, 240,
240 and 235 millimetres and then change the heights
with increments of 3 millimetres. The three lowest
eigenfrequencies are reported in Table 2.

∆1 ∆2 ∆3 ∆4 f1 f2 f3

+0 +0 +0 +0 72.689 72.981 73.204
−3 +0 +0 +0 72.740 73.071 73.434
−6 +0 +0 +0 72.756 73.092 73.769
+3 +0 +0 +0 72.501 72.857 73.146
+6 +0 +0 +0 72.183 72.818 73.132
+0 +0 +0 −3 72.721 73.106 73.416
+0 +0 +0 −6 72.730 73.127 73.754
+0 +0 +0 +3 72.528 72.812 73.166
+0 +0 +0 +6 72.208 72.773 73.157
+0 −3 −3 +0 72.834 72.981 73.426
+0 −6 −6 +0 72.894 72.981 73.734
+0 +3 +3 +0 72.428 72.981 73.098
+0 +6 +6 +0 72.105 72.981 73.055

Table 2: The three lowest eigenfrequencies [MHz]
computed for various adjustments of the four stem
heights.

CONCLUSIONS AND OUTLOOK

The experimental results show that femaXX is capa-
ble of computing extremal eigenmodes of large prob-
lems efficiently in parallel. Currently femaXX uses more
memory than necessary, which prevents us from solv-
ing our largest models on typical Linux clusters with lim-
ited amount of RAM per node. This problem is mainly
caused by inefficient data structures for the sparse ma-
trices in Epetra. The Trilinos developers are already
working on a solution to this problem. Also our own
code will be further optimised with respect to both mem-
ory consumption and runtime.

We are working on coupling femaXX with the particle
tracking engine IPL [1]. femaXX will provide IPL with
realistic E- and B-fields in cavities and improve the ac-
curacy of the calculated particle trajectories.

ACKNOWLEDGEMENTS

I would like to thank Peter Arbenz, Martin Becka,
Tiziano Mengotti (Institute of Computational Science,
ETH Zürich) and Ulrich Hetmaniuk (Sandia National
Labs) for their valuable contribution to this project.

REFERENCES

[1] A. Adelmann, R. Geus, M. Zenon, Accurate Particle
Tracking in RF Structures, PSI Scientific and Tech-
nical Report 2004, VI.

[2] P. Arbenz, M. Becka, R. Geus, U. Hetmaniuk and
T. Mengotti, On a Parallel Multilevel Preconditioned
Maxwell Eigensolver, submitted to Parallel Comput-
ing.

[3] W. Gander and W. Gautschi, Adaptive Quadrature -
Revisited, BIT Vol. 40, No. 1, March 2000.

[4] R. Geus, Efficient Calculation of Eigenmodes us-
ing Femax++, PSI Scientific and Technical Report
2003, VI.

[5] Trilinos Project, http://software.sandia.gov/trilinos/.

PSI - Scientific and Technical Report 2004 / Volume VI


