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SLS Layout

• Pre-Injector Linac

– 100 MeV

• Booster Synchrotron

– 100 MeV – 2.4 (.7) GeV @ 3 Hz

– ǫx = 9 nm rad

• Storage Ring

– 2.4 (.7) GeV, 400 mA

– ǫx = 5 nm rad

• Eight Beamlines:
MS – 4S, µXAS – 5L,
DIAG – 5D, PX – 6S,
LUCIA – 7M, SIS – 9L,
PXII – 10S, SIM – 11M
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Booster - Design

– 3 FODO arcs with 48 BD (+SD) 6.4410◦and 45 BF (+SF) 1.1296◦

– 3× 6 Quadrupoles for Tuning, 54 BPMs, 2× 54 Correctors
–± 15 mm× ± 10 mm Vacuum Chamber
– Energy:100 MeV→ 2.7 GeV, Repetition Rate:3 Hz, Circumference:270 m
– Magnet Power:205 kW, ǫx @ 2.4 GeV:9 nm rad
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SR - Design

• 12 TBA: 8◦ / 14◦ /8 ◦

• 12 Straight Sections:

– 3 × 11 m(nL )

∗ Injection , 2×UE212, U19

– 3 × 7 m (nM )

∗ 2×UE56, UE54

– 6 × 4 m (nS)

∗ 2× RF, W61, 2×U19

• Energy: 2.4 (.7) GeV

• ǫx: 5 nm rad

• Current:350 mA (400 mA)

• Circumference: 288 m

• Tune:20.43/ 8.73(Femto Optics)

• Natural Chromaticity:-66 / -21
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88

RF frequency [MHz] 500
Harmonic number (25x3x5 =) 480
Peak RF voltage [MV] 2.6
Current [mA] 400
Single bunch current [mA] ≤ 10
Tunes 20.38 / 8.16

Natural chromaticity −66 / −21

Momentum compaction 0.00065
Critical photon energy [keV] 5.4
Natural emittance [nm rad] 5.0
Radiation loss per turn [keV] 512
Energy spread [10−3] 0.9
Damping times (h/v/l) [ms] 9 / 9 / 4.5
Bunch length [mm] 3.5
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SR - Lattice Calibration - Energy Spread, Energy
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• 7th Harmonic ofU24 at 8 mm gap:

– σe = 0.9·10−3

– Beam EnergyE = 2.44 GeV

• Resonant Spin Depolarization:νspin = 5.45,Peq ≈ 91 % withτp = 30 min

– Beam EnergyE = 2.4361±5·10−5 GeV
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SR - Lattice Calibration - Beta Functions

174 Quadrupoles with Individual PS
→→

Gradient Correction:

• Procedure:

1. Measure< βi > for i=1..174
δν = − 1

4π

∮

β(s)δk(s)ds

Precision:≈ 1.5/ 1.0%

2. Fit Errorsδki to < βi > (SVD)

3. Correct< βi > with -δki

4. Measure< βi > again

• Results:

– Horizontalβ Beat:≈ 4 %

– Verticalβ Beat:≈ 3 %
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SR - Stability - Requirements

• βx = 1.4 m, βy = 0.9 mat ID position of section nS→

σx = 84µm, σy = 7 µm assuming emittance couplingǫy/ǫx = 1 %

• With stability requirement∆σ = 0.1× σ →
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SR - Stability - Noise Sources

• Short term (<1 hour):
Ground vibration induced by human activities, mechanical devices like
compressors and cranes or external sources like road trafficpotential-
ly attenuated by concrete slabs, amplified by girder resonances and s-
patial frequency dependent orbit responses, ID changes (fast polariza-
tion switching IDs<100 Hz), cooling water circuits, power supply (PS)
noise, electrical stray fields, booster operation, slow changes of ID set-
tings, “top-up” injection.

• Medium term (<1 week):
Movement of the vacuum chamber (or even magnets) due to changes
of the synchrotron radiation induced heat load especially in decaying
beam operation, water cooling, tunnel and hall temperaturevariations,
day/night variations, gravitational sun/moon earth tide cycle.

• Long term (>1 week):
Ground settlement and seasonal effects (temperature, rainfall) resulting
in alignment changes of accelerator components including girders and
magnets.

msec

sec

hours

days

weeks

years
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SR - Stability - Short Term

f [Hz] Noise Source
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SR - BPM/Corrector Layout

sector

8 8
14

Quadrupole

Sextupole

Dipole

Horizontal / Vertical Correctors

BPMs

• 12sectors

• 6 BPMsand 6Horizontal/Vertical Correctors persector

• Correctors inSextupoles, BPMsadjacent toQuadrupoles
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SR - Stability - BBA/Golden Orbit
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BBA offset = convolution of mechanical and electronical properties of BPM

alter focusing of individual quadrupoles, resulting RMS orbit change

DC RMS corrector strength reduced when correcting to BBA orbit !

is proportional to initial orbit excursion at location of quadrupole.

offset BPM − adjacent quadrupole center
Beam−based alignment (BBA) techniques to find

Golden Orbit: goes through centers of quadrupoles
and sextupoles in order to minimize optics distortions
leading to spurious vertical dispersion and betatron
coupling (emittance coupling) + extra steering @ IDs

Extra Steering

4S 6S 7m 9L 11M
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SR - Stability - Orbit Correction

• “Response Matrix”Aij , mappingCorrector j(1 ≤ j ≤ n) to the corresponding BPM pattern
BPM i (1 ≤ i ≤ m) (from model or orbit measurements) needs to be “inverted” in order to get
Corrector jfor givenBPM i

– n = m: square matrix withn independent eigenvectors not ill-conditioned→ unique
solution by matrix inversion

– n 6= m: non-square matrix by design or due to BPM failures and/or corrector
saturation→ solution:

• Singular Value Decomposition (SVD)- Decomposes the “Response Matrix”

Aij =

√
βiβj

2 sin πν
cos [πν − |φi − φj |] containing the orbit “response” inBPM i to a change of

Corrector jinto matricesU ,W ,V with A = U ∗ W ∗ V T . W is a diagonal matrix containing
the sorted eigenvalues ofA. The “inverse” correction matrix is given by
A−1 = V ∗ 1/W ∗ UT

– n > m: minimizes RMS orbit and RMS corrector strength changes

– n < m: minimizes RMS orbit

– n = m & all eigenvalues: matrix inversion

– “Most Effective Corrector” combinations by means of cutoffs in the eigenvalue spectrum
→ SVD makes other long range correction schemes like “MICADO”superfluous
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SR - Stability - Orbit Correction

Remarks on matrix inversion:

• Since modern light sources are built with very tight alignment tolerances and BPMs are well
calibrated with respect to adjacent quadrupoles, orbit correction by matrix inversion in thenxn

case has become an option since

– resulting RMS corrector strength is still moderate (typically ≈100µrad)

– BPMs are reliable and their noise is small (no BPM averaging is performed which is similar
to a local feedback scenario)

• This allows to establish any desired “golden orbit” within the limitations of the available
corrector strength and the residual corrector/BPM noise.

Remarks on horizontal orbit correction:

• Dispersion orbits due to “path length” changes (circumference, model-machine differences, rf
frequency) need to be corrected by means of the rf frequencyf .

• A gradual build-up of a dispersionD related corrector pattern
∑

A−1

ji
Di with a nonzero mean

must be avoided→ leads together with rf frequency change to a corrected orbitat a different
beam energy.

• Subtract pattern
∑

A−1

ji
Di from the actual corrector settings before orbit correctionin order to

remove ambiguity.
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SR - Stability - Medium Term

In this regime high mechanical stability is needed to achieve stability on the sub-micron level:

• Stabilization of tunnel, cooling water temperature and digital BPM electronics to≈ ±0.1◦and
the experimental hall to≈ ±1.0◦.

• Minimization of thermal gradients by discrete photon absorbers and water-cooled vacuum
chambers.

• Stiff BPM supports with low temperature coefficients and monitoring of BPM positions with
respect to adjacent quads (POMS).

• Monitoring of girder positions (Hydrostatic Leveling System (HLS), Horizontal Positioning
System (HPS)).

• Full energy injection and stabilization of the beam currentto≈0.1 % (“top-up” operation):

300(+1) mA top−up @ SLS ~6 days
A.Lüdeke THPKF012
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SR - Stability - Medium Term - Top-up

• “Top-up” operation guarantees a constan-
t electron beam current and thus a constan-
t heat load on all accelerator components. It
also removes the current dependence of BP-
M readings under the condition that the bunch
pattern is kept constant (B. Kalantari)

• Horizontal mechanical offset (≈0.5 µm res-
olution) of a BPM located in an ar-
c of the SLS storage ring with respec-
t to the adjacent quadrupole in the case of
beam accumulation,“top-up” @ 200 mA and
decaying beam operationat 2.4 GeV:

– Accumulation and decaying beam opera-
tion: BPM movements of up to 5µm.

– “Top-up” operation: no BPM movemen-
t during “top-up” operation at 200 mA
after the thermal equilibrium is reached
(≈1.7 h).
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• 0.3 % current variation (350 (+1) mA) @
τ ≈ 11 h

• Injection every≈ 2 min for≈ 4 sec
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SR - Stability - Transition from Slow to Fast Orbit Feedback

Temporal mean of the RMS orbit deviation from the BPM reference settingsxrms / yrms and the
corresponding RMS corrector strengthxkrms / ykrms in 2003 for three different operation modes:

horizontal vertical

mode xrms xkrms yrms ykrms

SOFB(250) 1.0µm 410 nrad 750 nm 230 nrad

SOFB(co) 1.0µm 120 nrad 300 nm 80 nrad

FOFB 0.7µm 17 nrad 60 nm 15 nrad
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SR - Stability - Fast Orbit & X-BPM Feedback
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SR - Stability - X-BPM & Bunch Pattern Feedback

• The bunch pattern feedback maintains the bunch pattern (390bunches (≈1 mA)) within <1 %

• The X-BPM feedback (slave) stabilizes the photon beam (≈9 m from source point) by means of
changes in the reference orbit of the fast orbit feedback (master) to≈0.5µm for frequencies up
to 0.5 Hz
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SR - Stability - Feed Forward & X-BPM Feedback

• The feed forward tables (here forU24) ensure a constant X-BPM reading for the desired gap
range (here 6.5-12 mm) within a fewµm. The remaining distortion is left to the X-BPM
feedback
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SR - Stability - Medium Term - Top-up

• Change of the vertical BPM reference within the X-BPM feedback loop for decaying beam
operation (0-4 h) and “Top-up” (Time constant for getting back to thermal equilibriumτ=1.7 h):
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SR - Stability - Long Term Stability

• Horizontal BPM/Quadrupole offsets for BPM upstream ofU24 over 14 weeks @ different
top-up currents (180, 200, 250, 300 mA) with 3 shutdowns (left plot)

• Circumference change over 3 years of SLS operation (→ ∆ circumference≈ 3 mm) (right plot)
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• Severe problems with the cooling capacity of the SLS during the hot summer 2003 (#82)! Again
“scheduled” problems in 2004 (#130) due to the cooling system upgrade!
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Orbit Stability at the SLS

IWBS2004

SR - Stability - Long Term Stability

• Fitted circumference change over 3 years of SLS operation (→ ∆ circumference≈ 2 mm) as a
function of the fittedoutside temperature(left plot)

• Circumference change as a function of the averagetunnel temperature (right plot)
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• Stabilization of thetunnel temperature to ≈ ±0.1◦is needed to guarantee sub-micron
movement !
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Orbit Stability at the SLS

IWBS2004

Conclusions

• The fast orbit feedback and X-BPM
feedbacks guarantee excellentshort
term stability up to 100 Hz.

• “Top-up” Operation allows to maintain
this degree of stability on themedium
term scaleover weeks.

• Long term stability suffered from
problems with the cooling system dur-
ing the summer months over the last 2
years.
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