

- http://www.jacow.org
- Preliminary proceedings available on conference web-site: http://www.elettra.trieste.it/fel2004/proceedings.html (papers & slides of oral presentations)
- The abstract booklet, author and affiliation index is available at: http://www.elettra.trieste.it/fel2004/abook.html

Types of free-electron lasers:

- Single-pass devices
- Storage-ring FELs
- High average-power devices

I will just discuss some examples, for an extensive view, please visit:

- the FEL2004 web-site: http://www.elettra.trieste.it/fel2004
- FEL virtual library: http://sbfel3.ucsb.edu/www/vl_fel.html

rene.bakker@psi.ch / 10-Dec-2004

Types of free-electron lasers:

Existing FELs

EXISTING FELs	λ (μm)	Gz (ps)	E (MeV)	I (A)	N	λ ₀ (cm)	K (rms)	
FEL-CAT	760	15-20	1.8	5	16	2.5	0.75	RF.O
UCSB mm FEL	340	25000	6	2	42	7.1	0.7	EA,O
Novosibirsk (RTM)	120-180	70	12	10	2×33	12	0.71	RF.O
Korea (KAERI-FEL)	97-1200	25	4.3-6.5	0.5	80	2.5	1.0-1.6	MA,O
Himeji (LEENA)	65-75	10	5.4	10	50	1.6	0.5	RF,O
UCSB (FIR FEL)	60	25000	6	2	150	2	0.1	EA,O
Osaka (ILE/ILT)	47	3	8	50	50	2	0.5	RF,O
Osaka (ISIR)	40	30	17	50	32	6	1	RF,O
Tokai (JAERI-FEL)	22	2.5-5	17	200	52	3.3	0.7	RF,O
Bruyeres (ELSA)	20	30	18	100	30	3	0.8	RF,O
Osaka (FELI4)	18-40	10	33	40	30	8	1.3-1.7	RF,O
UCLA-Kurchatov	16	3	13.5	80	40	1.5	1	RF,A
LANL (RAFEL)	15.5	15	17	300	200	2	0.9	RF,O
Stanford (FIREFLY)	15-80	1-5	15-32	14	25	6	1	RF,O
UCLA-Kurchatov-LANL	12	5	18	170	100	2	0.7	RF,A
Maryland (MIRFEL)	12-21	5	9-14	100	73	1.4	0.2	RF,O
Beijing (BFEL)	5-20	4	30	15-20	50	3	1	RF,O
Dresden (ELBE1)	3-22	10	40	8	2×34	2.73	0.3-0.8	RF,O
Korea (KAERI HP FEL)	3-20	10-20	20-40	30	30×2	3.5	0.5-0.8	RF,O
Newport News (IR demo)	3, 6, 10	0.2	160	270	25	20	4.5	RF,O
Darmstadt (FEL)	6-8	2	25-50	2.7	80	3.2	1	RF,O
BNL (HGHG)	5.3	6	40	120	60	3.3	1.44	RF,A
Osaka (iFEL1)	5.5	10	33.2	42	58	3.4	1	RF,O
Tokyo (KHI-FEL)	4-16	2	32-40	30	43	3.2	0.7-1.8	RF,O
Nieuwegein (FELIX)	3-250	1	50	50	38	6.5	1.8	RF,O
Duke (MARKIII)	2.7-6.5	3	31-41.5	20	47	2.3	1	RF,O
Stanford (SCAFEL)	3-13	0.5-12	22-45	10	72	3.1	0.8	RF,O
Orsay (CLIO)	3-53	0.1-3	21-50	80	38	5	1.4	RF,O
Vanderbilt (FELI)	2.0-9.8	0.7	43	50	52	2.3	1.3	RF,O
Osaka (iFEL2)	1.88	10	68	42	78	3.8	1	RF,O
Nihon (LEBRA)	0.9-6.5	<1	58-100	10-20	50	4.8	0.7-1.4	RF,O
UCLA-BNL (VISA)	0.8	0.5	70.9	250	220	1.8	1.2	RF,S
BNL (ATF)	0.6	6	50	100	70	0.88	0.4	RF,O
Dortmund (FELICITAI)	0.42	50	450	90	17	25	2	SR,O
BNL NSLS (DUVFEL)	0.1	0.7	300	500	256	3.9	0.7	RF,SH
Orsay (Super-ACO)	0.3-0.6	15	800	0.1	2×10	13	4.5	SR,O
Osaka (iFEL3)	0.3-0.7	5	155	60	67	4	1.4	RF,O
Okazaki (UVSOR)	0.2-0.6	6	607	10	2×9	11	2	SR,O
Tsukuba (NIJI-IV)	0.2-0.6	14	310	10	2×42	7.2	2	SR,O
Italy (ELETTRA)	0.2-0.4	28	1000	150	2×19	10	4.2	SR,O
Duke (OK-4)	0.193-2.1	0.1-10	1200	35	2×33	10	0-4.75	SR,O
ANL (APSFEL)	0.13	0.3	399	400	648	3.3	2.2	RF,S
DESY (TTF1)	0.08-012	0.04	250	3000	492	2.73	0.81	RF,S

Proposed FELs

W.B. Colson - THPOS58

Cavity Stability

- Storage-ring FEL Important issue: e.g., 1 W of average output power 200 W of intra-cavity power
- High average-power IR FEL e.g., JLAB FEL: > 10 kW average output power, i.e., more than 100 kW average intra-cavity power.

ref: TUCOS02, TUBOS03

rene.bakker@psi.ch / 10-Dec-2004

High average-power lasers: FEL challenge (JLAB)

FELs need a high peak current. a factor of 4 growth in the longitudinal emittance due to space charge. longer electron bunches in the injector can reduce space charge effects but reduces the machine acceptance. Halo loss initially limited the average current. Resonator FELs need a high average current Bunch spacing must match the cavity length. Injector acceleration Accelerators Beam break-up limits avarege current Dump 3 mA 8 mA deceleratio Undulator JLAB recirculating FEL FEL resonator

High average-power lasers: FEL challenge (JLAB)

- Need energy/phase correction to third order (octupoles are required)
- Operating close to crest does not provide enough footroom.

Single-Pass Devices

• Startup from noise (auto-start): SASE

- Relatively easy
- Flexible for wavelength tuning
- High output power
- Spiky

Seeded startup

- Improved spectral purity
- Suppression of spiking
- Control over the µ-pulse duration
- (Longitudinal jitter defined by seed)

rene.bakker@psi.ch / 10-Dec-2004

Single-Pass Devices

Startup from noise (auto-start): SASE

- Relatively easy
- Flexible for wavelength tuning
- High output power
- Spiky

LCLS, TTF, X-FEL, SPARC,

Seeded startup

- Improved spectral purity
- Suppression of spiking
- Control over the µ-pulse duration
- (Longitudinal jitter defined by seed)

BESSY, FERMI, TTF, LUX,

MIT, LCLS, X-FEL,

rene.bakker@psi.ch / 10-Dec-2004

Storage-Ring is A Spinning-Top

Very Stable and Quiet

Linac is "A Archery"

Shooting is not stable, it is a game, sometimes noisy.

Courtesy T. Shintake, RIKEN/SPring8, MOBIS01

PAUL SCHERRER INSTITUT

Single-Pass Devices

Storage Ring vs. LINAC

	Storage Ring	LINAC
Machine condition	Steady state	Transient / Pulsed
Trajectory	Closed orbit (eigen-vector)	Open trajectory (no eigen-vector)
Damping	Synchrotron damping	No damping
Beam clearing	Dynamic aperture of machine	No clearing dark currents may propagate
Noise bandwidth	~1 kHz (narrow tune resonance)	~GHz (no resonance)
Energy and intensity stability	10 ⁻⁵ – 10 ⁻⁶	10 ⁻² – 10 ⁻³

Courtesy T. Shintake, RIKEN/SPring8, MOBIS01 - MODIFIED

rene.bakker@psi.ch / 10-Dec-2004

Courtesy T. Shintake, RIKEN/SPring8, MOBIS01

- AC line fluctuations power supply fluctuations: gun, RF, orbit,
- Switch-tune pulse-to-pulse jitter
- Switching noise fluctuations
- AD/DA digitizing noise
- Temperature fluctuations LINAC, electrical circuits
- Ground motion
 natural, human activity

Feed-back is mostly not possible Feed-forward:

between micro-pulses

between macro-pulses

rene.bakker@psi.ch / 10-Dec-2004

진요죠

EWEE

돈값없었

Gain Length

Single-Pass Devices

Transverse Orbit / Undulator

- Electron beam orbit must be controlled over a few gain-lengths.
- Within this distance: gain reduction

$$\begin{split} \dot{L_g} &= L_g / (1 - x^2) \\ x &= \theta / \theta_c, \ \theta_c = \sqrt{\lambda / L_g} \end{split}$$

Y.-C. Chae et al (APS) MOBOS03 T. Tanaka, et al., FEL 2003

rene.bakker@psi.ch / 10-Dec-2004

Over larger distances the overlap between optical field and the electron beam may disappear. In such a case, the microbunching will re-initiate the FEL process over a few undulator periods only.

