<u>Conceptual Design of the</u> <u>PETRA III</u> <u>Orbit Feedback</u>

K. Balewski, H.T Duhme, J. Klute, I. Krouptchenkov, R. Neumann, G. K. Sahoo, M. Wendt

K. Balewski (DESY)

PETRA III

PETRA III

A Low Emittance Synchrotron Radiation Source

Technical Design Report

Parameters:

- energy: 6 GeV
- current: 100 mA
- emittance: 1 nmrad
- straight sections: 9
- undulators: 13
- undulator length: 2, 5, 20 m

DESY 2004 - 035

February 2004

PETRA III Conversion of PETRA II (2304 m circ.)

Conversion is going to start middle of 2007

Operation with beam should start in 2009

PETRA III Optics old octant

element	Hor. (µm)	Ver. (µm)	Roll (mrad)	Long. (µm)
monitors	200	200		
Quad's old oct.	250	250	0.2	500
Dipoles	250	250	0.2	500
Sext.	250	250	0.2	500

PETRA III Optic new octant

element	Hor. (µm)	Ver. (µm)	Roll (mrad)	Long. (µm)
monitors	200	200		
Quad's new oct.	100	100	0.2	500
Dipoles	250	250	0.2	500

Dispersion limits to achieve design emittance

	Hor. (mm)	Ver. (mm)
Wiggler section	18	5
Undulator's (ID's)	20	3
FODO arc		58
DBA	22	31

Orbit stability goal

 $\varepsilon_x = 1$ nmrad coupling 1%

	Low β insertion		High β insertion			
	β(m)	σ(μ m)	σ'(μ rad)	β (m)	σ(μ m)	σ'(μrad)
Horizontal	1.2	34.6	28.9	20.0	141	7.1
Vertical	3.9	6.2	1.6	2.4	4.9	2.0

Stab. Requirement 0.1 * σ \rightarrow Sub micron orbit stability !!

K. Balewski (DESY)

1. Golden Orbit

Combined orbit and dispersion correction:

$$\begin{pmatrix} \vec{\alpha u} \\ (1-\alpha) \vec{D_u} \end{pmatrix} + \begin{pmatrix} \alpha R \\ (1-\alpha) S \end{pmatrix} \vec{\theta} = \vec{0}$$

u and D_u measured orbit or dispersion R and S orbit or dispersion response matrix α weighting factor

Alternative: separated orbit & dispersion correction with skew quads

Elements for orbit correction

- 206 beam position monitors
- 182 horizontal correctors (resolution \geq 16 bit)
 - 98 backleg windings on old dipoles
 - 18 backleg windings on new dipoles
 - 66 single correctors
- 189 vertical correctors (resolution \geq 18 bit)
 - 91 additional windings on sextupoles
 - 98 single correctors

Omax ≈ 0.5 mrad Ł B*I = 100 Gm

2. Orbit stabilization

• top -up

slow feedback: repeated orbit correction every few seconds
using all monitors and correctors via SVD algorithm
fast feedback : BW few tenth of Hz up to 100 Hz

Fast orbit distortions in PETRA II

Fast feedback requirements: BW 100 Hz amplitude reduction faktor ≤ 5

K. Balewski (DESY)

Elements for fast orbit correction

41 vertical & horizontal correctors (air coils:

 Θ max \approx 5 µrad & B*I = 1 Gm)

- 30 new octant (for orbit stabilisation)
- 11 old octant (1 per short straight & 1 at the beginning and end of long straight section) to maintain small vertical emittance
- Photon BPM's (?)

• monitor (resolution)

monitors	#	Hor. (µm)	Ver. (µm)
Old octant	148	10	10
New octant	40	2	0.5
Next to ID	18	2	0.2

Position of Monitors & Correctors in DBA cell

Rate of orbit measurements: ≥4 kHz Data flow on cables (fiber optics) manageable Digital controller (SVD & PID) feasible Power supplies: work in progress Correctors: air coils similar to ESRF

Long term stability slow orbit feedback

Alignment of the machine every half year
temperature stability (new octant ± 0.1 ℃ old octant ± 1 ℃)
cooling water temperature ± 0.2 ℃)
establishing a new golden orbit ≥ 24 h

ATL law:

$$\Delta x^2 = A \cdot T \cdot L$$

A=4*10⁻⁶ μ m²/m/s ; L = 65 m $\Delta x = 15 \mu$ m $\pounds T = 10 d$

monitors	#	Hor. (µm)	Ver. (µm)
Old octant	148	20	20
New octant	40	2	0.5
Next to ID	18	2	0.2*

* Special supports for monitors close to ID's

Summary

- PETRA III is an unconventional Light Source
- Unconventional measures have to be taken to fulfill the stability requirements
- Nevertheless use can be made of the experience gained at other light sources concerning correction procedures and hardware design