

Beam Stability Challenges at the European XFEL

Winfried Decking
DESY, Hamburg, Germany
IWBS 2004

IWBS 2004 Winni DeckingWinni

XFEL
X-Ray Free-Electron Laser

Outline

- Introducing the XFEL
- Beam Stability:
 - Slow
 - Undulator alignment
 - Medium
 - Element Jitter
 - Fast
 - Transients
 - Beam distribution
- Conclusions

XFEL Principle

Linear Accelerator based Self Amplification of Spontaneous Emission (SASE) Free Electron Lasers (FELs) in the X-Ray regime (~0.85 - 60 Å)

Electron bunch modulated with its own synchrotron radiation field

- ⇒ micro-bunching
- ⇒ more and more electrons radiate in phase until saturation is reached

Need excellent electron beam quality:

- low emittance
- low energy spread
- extremely high charge density

Need long undulator

IWBS 2004 Winni Decking

Spectral Characteristics of Radiation

- Average Brilliance [Photons/(s mrad² mm² 0.1% BW)] 10²² 10²⁰ /UV-Undulator 10¹⁸ 10¹⁶ PETRA 10¹⁴ Wigale DORIS III 10¹² Bending Magne 10¹⁰ Cu K, X-ray tube 10⁸ 10³ 10⁵ 10⁴ 10² 10⁶ 10 Energy [eV]
- Average brilliance: 1. BESSY II U125, 2. ALS U5, 3. DIAMOND U46, 4. ESRF ID16, 5. SPring-8 BL46; PETRA III: a. soft-X-ray undulator (4 m, high-), b. standard Kmax 2.2 undulator (5 m, high-), c. hard X-ray wiggler (Kmax 7, 5 m, high-).

- Radiation properties:
 - narrow bandwidth
 - fully polarized
 - transversely coherent
- Gain factors: (compared to 3rd generation sources)
 - peak brilliance
 - 109 SASE
 - 10⁴ spontaneous
 - average brilliance
 - 104 SASE
 - coherence
 - 109 photons/mode SASE

European XFEL

'Bullet' Beam: 20-30 μ m transverse and longitudinal beam size Sub-micron (or fs) stability in all 3 planes

IWBS 2004 Winni Decking

XFEL X-Ray Free-Flectron Laser

TESLA Technology / TTF

TTF module/SASE test facility => VUVFEL user facility

XFEL Time Structure

- Linac is pulsed with 10 Hz rep. rate
 (compromise between duty cycle and cryo load)
- Pulse length 650 μsec
- Minimum bunch distance in pulse 200 ns →
 - ≈ 3200 bunches per pulse
- Pulse structure at experiment should be flexible

IWBS 2004 Winni Decking

Beam Stability - Time Scales

Slow & medium

- •Ground motion, settlement, drift
- •Girder/Magnet excitation by cooling water, He-flow, ...

Fast

- Switching magnets
- •RF transients
- Long range wakes
- •RF jitter
- Photocathode laser jitter
- •PS jitter > 1000 kHz

Leads to:

- beam centroid motion
- beam shape variations → effects on SASE power and gain length

Example: beam centroid motion (a.u.)

Tolerances

- Linac and Diagnostic
 - knowledge of bunch position at diagnostic to 0.1σ sufficient
- From SASE process:
 - -0.1σ (whole undulator, absolute alignment)
 - Particle density and bunch shape to be maintained
- User requirements
 - Depend strongly on beam line layout
 - -0.1σ (last part of undulator)
 - pointing stability (800 m long beamlines), opening angle of $\approx 1~\mu {\rm rad}$

IWBS 2004 Winni Decking

XFEL X-Ray Free-Electron Laser

Undulator Alignment

Change of magnetic field and thus resonant wavelength due to

- Temperature : < 0.08 K- Gap : $< 1 \mu\text{m}$

- Alignment error : $< 100 \mu m$

Undulator:

•Tunable Gap for e-energy independent wavelength selection

• λ \approx 40- 80 mm •B \approx 0.5 - 1.3 T •Gap > 10 mm

•5 m long segments embedded in 12.2 m long FODO cell

•Total length ≈ 700 m

Photon Diagnostic based Undulator Alignment

- precision ~0.2µrad
- 5th harm. ∼ 62 keV
- detuning above peak
 ⇒ narrowing of cone
- cms independent of detuning
 0.2µrad resolution
- 0.2µrad resolution

 ⇔ ~7% cms accuracy
- precision ~3µm
- fixed MC energy
- 5th harm. ~ 62 keV

 (ref. gap = 23mm, open)

 3µm deviation

 ⇒ ~8% intensity
 drop
- Measurement at const. energy E_{fund}
- \Rightarrow flux variation ~400 for φ advance π →2 π

M. Tischer, P. Illinski, U. Hahn, J. Pflüger, H. Schulte-Schrepping, IWBS 200cl. Instr. & Meth A483 (2002) 418, TESLA-FEL 2000-13

Winni Decking

XFEL X-Ray Free-Electron Laser

RMS Ground Motion along Site

Ground Motion Spectra

H. Ehrlichmann W. Bialowons (DESY)

Winni Decking

XFEL Quadrupole Vibration in Module (Preliminary Resulting)

Medium Time Scale Beam Motion

With 70 nm (rms) linac quad movement:

about 0.05σ at linac end

 Additional quadrupole jitter in undulator and switch yard additional 0.02σ

IWBS 2004 Winni Decking

Single Bunch BPM Resolution at TTF 2 (1 nC)

Button BPM (warm, undulator section): < 10 μm

Stripline BPM (warm, quadrupoles):
 < 30 μm

• Button BPM (cold): $< 50 \mu m$

• Cavity BPM (cold): $<50~\mu m$ potential for resolution increase to <100~nm with small aperture design

IWBS 2004 Winni Decking

XFEL

Intratrain Jitter due to MB Wakefields

- For many XFEL applications the beam quality as obtained form these simulations may be good enough
- For best quality
 - Kick away the first part of the beam
 - This will reduce transverse multi-bunch emittance to 0
 - The multi-bunch energy spread will be eliminated as well

Detuning among cavities: 0.1 % rms Misalignment: 500 mm rms Inject beam on axis

N. Baboi - DESY

Jitter Investigations

Change of longitudinal and transverse beam profile during bunch compression due to coherent synchrotron radiation and space charge → changes in FEL gain length and saturation power

IWBS 2004 Winni Decking

Sensitivity Criteria

- Sensitivity Criteria Linac performance
 - Bunch length +10 %
 - Beam energy ±0.005 %
 - Variation of relative energy spread ±0.1 %
 - Bunch arrival time ±50 fs
- Sensitivity Criteria FEL performance
 - Radiation wavelength ±0.022 %
 - Saturation length ±1.6 %
 - Saturation power ±15 %
 - Bunch arrival time ±36 fs

Example for Tolerances and Sensitivities

	Sensitivity(p2p)	Tol. (p2p)	Tol. (rms)	Threshold
dT	± 0.729 ps	± 0.300 ps	0.100 ps	saturation length
dQ/Q	± 5.452%	± 3.000%	1.000%	saturation length
ACC1C1234 phase	± 0.133 deg	± 0.045 deg	0.015 deg	saturation length
ACC1C1234 dV/V	± 0.129%	± 0.045%	0.015%	arriving time
ACC1C5678 phase	± 0.072 deg	± 0.045 deg	0.015 deg	saturation power
ACC1C5678 dV/V	± 0.063%	± 0.045%	0.015%	arriving time
ACC234 phase	± 0.048 deg	± 0.045 deg	0.015 deg	arriving time
ACC234 dV/V	± 0.045%	± 0.045%	0.015%	arriving time
ACC39 phase	± 0.064 deg	± 0.045 deg	0.015 deg	saturation power
ACC39 dV/V	± 0.142%	± 0.045%	0.015%	arriving time
BC1 dI/I	± 0.013%	± 0.012%	0.004%	arriving time
ACC56 phase	± 0.721 deg	± 0.045 deg	0.015 deg	arriving time
ACC56 dV/V	± 0.913%	± 0.045%	0.015%	saturation length
BC2 dI/I	± 0.201%	± 0.012%	0.004%	arriving time
ACC78910 phase	±10.037 deg	± 0.045 deg	0.015 deg	SASE wavelength
ACC78910 dV/V	± 0.060%	± 0.045%	0.015%	SASE wavelength

Based on 2 BC layout

Yujong Kim - DESY

XFEL - Start two End (S2E) Simulations

Results of particle tracking (S2E simulations)

Start 2 End simulation of approx. 400 random seeds:

Yujong Kim - DESY

	RMS Error	Value
Radiation Wavelength	0.0068 %	0.1 nm
Saturation length	1.1 %	145 m
Saturation power	7.9 %	35 GW
Arrival time	32 fs	0 fs
Core slice emittance	0.1 %	0.9 nm
Transverse position	$1 \mu \mathrm{m}$	$0.5~\mu\mathrm{m}$
Bunch length	4.6 %	21 μ m
Energy spread variation	4.5 %	0.0089 %
Energy	0.0034 %	20 GeV

An example, values will change with changes in layout

XFEL X-Ray Free-Electron Laser

Conclusion

- Compare with 3rd generation light sources
 - No closed orbit, every bunch is different
 - Longitudinal properties important
 - Feedback systems with bandwidth closer to MB FB systems
 - Lots to learn from source hunt, long term stability, ...
- Interaction with 'users'
 - Time to distinguish is over
 - Accelerator is integral part of user experiment
 - Beam properties have to be measured before each experiment like in HEP
 - Photon beam properties are crucial input for accelerator operation and tuning

IWBS 2004 Winni Decking

XFEL X-Ray Free-Electron Laser

Conclusion

- Ompared to 3rd generation light soruces the endeavour to beam stability in SASE FEL just started
- Lots to learn from VUVFEL, LCLS and SPPS
- Keep an open mind

Thank you for your attention!
Thanks to the workshop organizers!