Beam Stabilization in SPring-8 Linac

JASRI Acc Div. Linac Group
H. Hanaki

Beam energy instability of SPring-8 linac is 0.01% rms.

How have we achieved it ••••

- 1 Overview of SPring-8 linac
- 2 Beam stabilization
 - Stabilization of RF amplitude & phase
 - Synchronization of linac RF with ring RF
 - Energy compression system (ECS)
 - Feedback control
- 3 Summary

Injection beam			
	Booster synchrotron		NewSUBARU
Beam energy	1 GeV	1 GeV	1 GeV
Repetition rate	1 pps	1 pps	1 pps
Pulse width	1 ns	40 ns	1 ns
Peak current	2 A	70 mA	200 mA
Energy spread	± 0.3 %	± 0.5 %	± 0.2 %

Present Linac RF System

Strategy for stabilizing beam energy

- 1 Stabilization of RF amplitude & phase
 - Investigate variation chains Stabilization of their origins or devices
- 2 Reduce beam loading fluctuation **\(\rightarrow No SHB!**
 - Synchronization of linac RF with ring RF
- 3 Compensate accidental energy variation
 - → Introduce Energy Compression System (ECS)
- 4 Reduce residual beam position drift
 - Introduce feedback control

Variation chains in SPring-8 linac

Reduction of long-period RF variation

- Room temperature stabilization
 - Readjustment of air conditioners
 - Covering the long drive line with heat jackets
 - Circulating temperature stabilized water inside the jackets
- Klystron temperature stabilization
 - Improvement of water cooling system
- Isolate line voltage variation
 - Stabilization of Pulse Forming Network (PFN) voltage by improving modulator regulation circuits

Room temperature stabilization

Klystron temperature stabilization

Calculated temperature coefficient: 0.74 deg. / °C

Improvement of modulater regulation

- Control Induction Voltage Regulator (IVR) to compensate line voltage variation
- Optimization of de-Q'ing rate 7% → 4%

Improved beam stability

Strategy for stabilizing beam energy

- 1 Stabilization of RF amplitude & phase
 - → Investigate variation chains Stabilization of their origins or devices
- 2 Reduce beam loading fluctuation **\(\rightarrow No SHB! \)**
 - Synchronization of linac RF with ring RF
- 3 Compensate accidental energy variation
 - → Introduce Energy Compression System (ECS)
- 4 Reduce residual beam position drift
 - Introduce feedback control

Asynchronous RF issue before 2001

Asynchronous 2856-MHz RF forms two or three bunches along with beam trigger timing referred to the RF phase.

Energy distribution of 1-ns beam (@1.9A)

- Unstable beam energy at high current
- Unstable current of single-bunch beam

New synchronous oscillator

- A start signal synchronous to 508.58 MHz starts the AWG to generate a **burst wave** of 89.25 MHz
- A narrow band pass filter reduces phase noises

Single-bunch current stability

Beam pulse width: 250 ps

Beam energy stability at high current

1-ns beam energy at 1.4 A

Strategy for stabilizing beam energy

- 1 Stabilization of RF amplitude & phase
 - → Investigate variation chains and fix their origins
- 2 Reduce beam loading fluctuation
 - Synchronization of linac RF with ring RF
- 3 Compensate accidental energy variation
 - → Introduce conventional Energy Compression System (ECS)
- 4 Reduce residual beam position drift
 - Introduce feedback control

Energy Compression System (ECS)

- Chicane expands bunch length along with beam energy.
- ECS compresses beam energy spread and variation.
- ECS requires RF phase stability -

ECS requires RF phase stability

1) PLL circuit for ECS klystron drive system

New synchronous Oscillator

Phase variation 0.2 deg. rms

2) Klystron voltage > 350 kV

Phase variation 0.2 deg. rms

ECS Phase instability: 0.3 deg. rms Energy instability: ~ 0.01% rms

ECS compressed beam energy spread

40-ns beam at 350 mA

Strategy for stabilizing beam energy

- 1 Stabilization of RF amplitude & phase
 - Investigate variation chains and fix their origins
- 2 Reduce beam loading fluctuation
 - Synchronization of linac RF with ring RF
- 3 Compensate accidental energy variation
 - → Introduce conventional Energy Compression System (ECS)
- 4 Reduce residual beam position drift
 - Introduce feedback control

Feedback control of beam trajectory

Problem: beam position drift

Beam position drift at the linac upstream

- Small betatron oscillation
 - Beam position drift at the injection points

Solution: beam position feedback control

Beam position stabilization at BT lines

- Injector part
- Linac end
- Long BT to the NewSUBARU storage ring

Control steering magnets reffering to BPM data

- Position window: 60μm
- Response time: a few minutes

Beam Position Feedback Control

Summary

- 1 Stabilization of RF amplitude & phase
 - → Investigate variation chains Stabilization of their origins or devices
 - **→** Energy instability: 0.03% rms
- 2 Reduce beam loading fluctuation
 - Synchronization of linac RF with ring RF
 - **→** Energy instability: < 0.01% rms
- 3 Compensate uncontrolable energy variation
 - → Introduce Energy Compression System (ECS)
 - Long and short term stability
 - High current injection
- 4 Reduce residual beam position drift
 - Introduce feedback control
 - → Position stability: 60 μm