

National Synchrotron Radiation Research Center

3rd International Workshop on Beam Orbit Stabilization - IWBS2004 December 6-10, 2004 Hotel Kirchbühl, Grindelwald, SWITZERLAND

Orbit Stabilization

at Taiwan Light Source

Kuo-Tung Hsu

December 6, 2004

Major Parameters of the Storage Ring

Lattice type Co	Combined function Triple Bend Achromat (TBA)				
Operational energy	1.5 GeV				
Circumference	120 m				
RF frequency	499.654 MHz				
Harmonic number	200				
Natural beam emittance	25.6 nm-rad				
Natural energy spread	0.075%				
Momentum compaction factor	0.00678				
Damping time					
Horizontal	6.959 ms				
Vertical	9.372 ms				
Longitudinal	5.668 ms				
Betatron tunes horizontal/vertic	cal 7.18/4.13				
Natural chromaticities					
Horizontal	-15.292				
Vertical	-7.868				
Synchrotron tune	1.06*10⁻² (SRF, 1.52*10⁻²)				
Bunch length	9.2 mm (Doris Cavities, 800 kV)				
	6.5 mm (SRF, 1.6 MV)				
Radiation loss per turn (dipole	e) 128 keV				
Nominal stored current (multi	bunch) 200 mA (~2004), 300~400 mA (2005~)				
Number of stored electrons (m	ultibunch) $5*10^{11}$ (SRF cavity, 10^{12})				

Efforts to Improve Beam Stability

Coupled-bunch instability :

RF gap voltage modulation (~ October 2004)

Superconducting RF (December 2004 ~)

(to accompany double the stored beam current).

Coupled bunch feedback system

Orbital stability:

Source Elimination

Ambient temperature, Water temperature, Enhance data acquisition system, Vibration elimination, Power quality improvement, Power supply improvement ...etc. Orbit feedback system

Top-up injection

Mechanical Related Source Elimination

Program initiation	1997	1998	1999	2000	2001	2002	
Performance, T orbit Io/Io	> 1 (drift>50 m) >1%	~ 0.25	< 0.2 (drift~20 m)	~ 0.15 <3 m rms ~0.5%	< 0.1 (drift<5 m)	< 0.1 <1 m rms ~ <0.3%	(2003) 0.069
1. Utility Capacity Improvement	CTW, CHW Stability			Utility bu CHW	ilding #2 consti capacity impro	ruction ved →	
2. Heat Source Global effect studies full energy upgrade full energy injection (air/water temp., cable heat)							
3. Thermal-Mechan Effects	ical	(Girder, thermal ir	BL-, F	um chamber, S RF-DIW temp.	R heat mask	↓ →
4. Vibration	AHU, crane Piping imp vibration pre-reduced Damping study Floor meas.						
5. Sensors Implementation	Air temp. senso	rs	Position senso	rs SCA	DA implementa lectrical sensor	ation rs ───	
6. Control System	Water control sys VF controller imp <u>Util</u>	stem upgrade plementation lity data archiv	→ ve system		AHU co AHUs	ntroller upgrade s reorganized	

National Synchrotron Radiation Research Center

NSRRC

(J. R. Chen, et. al.)

Magnet (Water Temperature)

Caused by the temperature fluctuations of magnet cooling water Magnet deformed ~ 10 m/ Induced beam orbit drift: 5 ~ 50 m /

Current status

Cooling water temp.: ~ 0.1

Girder Displacement

- Main cause: air temperature Sensitivity to air temp.: ~10 m / Induced beam orbit drift: 20-100 m /
- Current status: < 0.1 m per 8 hr shift Air temp. : < 0.1

(utility control system improved) Thermal insulator jacket

Expansion of Vacuum Chamber

- Caused by synchrotron light irradiation. Sensitivity to water temp.: ~ 10 m / Move the girder (~ 0.3 m/) and BPM (~ 1 m/) Induced beam orbit drift: ~10-30 m /
- Current status Vacuum cooling water temp.: ~ 0.5

Power Supply Related High Frequency Orbital Noise (Source Elimination)

@ 136 mA (August 22, 2001)

High Frequency Corrector Power Supply Noise

Typical Corrector Spectrum

Observation at Infrared Beamline

Environment of BPM System

Orbit Feedback System Architecture

Orbit Feedback System Summary

- * 22 correctors + 30 BPMs for both plane
- * Using measured response matrix
- * Singular Value Decomposition (SVD) approach to invert the response matrix
- * Proportional, Integral and Derivative (PID) control algorithm
- * Orbit acquisition rate 1 kHz
- * Loop bandwidth is about 5 Hz now (30 Hz before December 2003)
- * Unified system for global feedback and local feedback system
- * Remote enable/disable of the feedback loop
- * Orbit excursion reduced to less than ~ um level for ID operation - U5, U9 and EPU5.6
- * Suppress orbit leakage due to non-ideal dynamic local bump - EPBM
- * Prototype local feedback loop by using e-BPMs

Orbit Feedback System Summary (cont.)

 * DSP feedback engine was replaced by general purpose PPC module User friendly development environment Lift maintenance difficults Slightly increase jitter < 50 μsec (DSP < 10 μsec)

* Robustness enhancement of the feedback loop BPM Check RMS, data change rate, ...etc Limited correct setting range

Problems and Plan of the Orbit Feedback System

Major Problems :

* Loop bandwidth is too small right now

=> cannot eliminate mechanical related oscillation

=> Limited gap/phase changing speed of IDs

Short-term Plans:

* Increase sampling rate o 2 kHz to 4 kHz

- * Modify corrector power supply regulation loop
- * Increase loop bandwidth > 100 Hz

Closed Orbit and Orbit Stability

Closed Orbit : <u>~10 μ m</u> rms with DC correction schemes. (Peace Chang et al.)

Orbit distortions: $\leq 10 \ \mu m$ rms during insertion gap scan can be compensated for using look-up correction tables. (Peace Chang et al.)

Beam orbit stability: <u>a few µm level (peak-to-peak)</u> with a global feedback system. (C. H. Kuo et al.)

INSRRC

Eliminated Orbit Leakage for EPBM Operation

0.2

National Synchrotron Radiation Research Center

(C.H. Kuo et. al.)

Difference Orbit - EPBM 'on', DGFB 'off

Insertion Devices in the TLS Storage Ring

			\square							
Insertion Dev	ice	SWLS	EPU5.6	T	U5	SW6	W20	U9	IASW]
Location Sect	ion	S1	S2		S 3	S4/RF	85	S6	Arc 2,4,6	4010
Туре		SC	Pure		Hyb.	SC	Hyb.	Hyb.	SC	U5(1) SP8-U3.2(1)
Magnet Length	(M)	0.835	3.9		3.9	1.404	3.0	4.5	0.85	10^{16} $10^{$
Period Length	(cm)	25	5.6		5	6	20	9	6	
(Min.) Gap (m	ım)	55	18		18	18	22	18	18.5	EPU5.6(1)
Number of Per	iods	1.5	66		76	16	13	48	7.5	
Maximum By (Bx (Tesla)	i) Field	6	0.67 (0.45)		0.64	3.2	1.8	1.25	3.5	(7) - (7) -
Photon Energy	Min.	4000	80		60	5000	800	5	5000	SRRC-BM
(eV) [Used Range]	Max.	38000	1400		1500	14000	15000	100	14000	E 10 ¹² SWLS
Defection Parame (Kx)	eter Ky	190.5	3.52 (2.37)		2.99	17.9	33	10.46	19.6	
Vertical Tune Shi (Horizontal Tune	ft Shift)	0.0504 (-0.014)	0.011 (-0.012)		0.008	0.036	0.036	0.033	0.05	Photon Energy (eV)
Installation D	ate	Apr. 2002	Sep. 1999		Mar. 1997	Dec. 2003	Dec. 1994	Apr. 1999	2005	The photon flux vs. photon
without Feed-forward Nettonal Synchrotron Rediation Research Center Tune Correction							Feed	with d-forw Tune prrecti	vard on	IDs at TLS. Two Taiwan beamlines, SP8-BM and SP8- U3.2, at Spring 8 are also depicted

Orbit stability of the NSRRC Storage Ring

With the follow-gap look-up table and global orbit feedback system, the orbit drift of the field scan of U5, U9 and EPU5.6 can be reduced from a few hundred microns to <u>a few microns</u>. When the gaps of U5, U9 and EPU5.6 are scanned from 19, 21, and 21 mm to 39, 41, and 41 mm, the closed orbit distortions indicated by the R4BPM5X (blue) and R3BPM3Y (green), those are used in the faster orbit feedback system, are within 2 microns in both horizontal and vertical planes.

NSRRC

National Synchrotron Radiation Research Center

(Peace Chang, et. al.)

Photon Beam Stability Monitor ($\Delta I_o / I_o$)

History of the Photon Beam Stability $(\Delta I_0/I_0)$

Top-up Injection Project

Top-up injection scheme planned. Feasibility demonstrated.

Experiment of Top-up injection

(G.H. Luo et. al.)

Cooling Water and Chamber Temperature

National Synchrotron Radiation Research Center

(G.H. Luo et. al.)

Compound Displacement of the of Beam Position Monitor Reading

-Intensity dependency of BPM electronic and BPM support fixtures (~ μ m)

-Filling pattern dependency of BPM electronics (~ μ m)

-RF gap voltage condition variation

-BPM support structure (~ $10 \ \mu m$)

-Thermal related (~ $10 \ \mu m$)

⁽G.H. Luo et. al.)

Vertical Beam Position Variation

Horizontal Beam Position Variation

Top-up Injection Plan

Renew 1.5 μ sec half-since injection kicker to reduced jitter and to improve waveform matching .

Gate of the orbit feedback loop is a provincial solution to remedy mismatching problem of the injection kickers.

- User experiment with injection gate and without is performed, acceptable results get up to now.
- **Improve gun pulser and linac performance to improve filling pattern control.**
- Studies of the injector reliability, injection efficiency, and minimization of orbit perturbation during injection, etc., are ongoing.

Top-up operation is scheduled in late 2005.

Parameters of the Proposed Taiwan Photon Source

Electron Energy	3 ~ 3.3 GeV						
Current	400 mA at 3 GeV or 300 mA at 3.2 GeV (Top-up injection)						
SR Circumference	518.4 m (h = $864 = 2^5 \cdot 3^3$, dia.= 165.0 m)						
BR Circumference	499.2 m (h = 832 = 2 ⁶ ·13, dia.= 158.9 m)						
Lattice	24-cell DBA						
Straight-section	10.5 m x 6 ($_{v} = 10.5$ m, $_{h} = 160$ m) 6 m x 18 ($_{v} = 8$ m, $_{h} = 110$ m) 3 m x 12 ($_{v} = 4.5$ m, $_{h} = 250$ m; In-achromat)						
Bending-section	x 12						
Emittance	< 2 nm·rad at 3 GeV (Distributed dispersion)						
Coupling	1 %						
RF Frequency	500 MHz						
RF Max. Voltage	4.8 MV (4 SRF cavities)						
RF Max. Power	720 kW (4 SRF cavities)						
Site	NSRRC in Hsinchu Science Park , Taiwan						
Building	223 m OD (700 m circumference) 139 m ID (437 m circumference)						

Sub-µm orbital performance is one of a design goal.

Summary

- * To achieve μm (sub- μm) orbital performance is a short term goal at TLS.
- * Further develop of fast orbit feedback system is needed in following area:
 - Corrector PS improvement
 - High sampling rate (~ 2 KHz/4 KHz)
 - PS control interface
 - BPM system improvement in engineering as well as software functionality.
- * Top-up operation mode is scheduled, beam orbit stability will be improve further.
- * Sub-μm orbital performance is one of a challenge for the newly proposed 3 ~ 3.3 GeV Taiwan Photon Source

