#### **Beam Orbit Stabilization at Diamond Light Source**



#### **Ian Martin**

International Workshop on Beam Stabilization

Grindelwald, Switzerland

 $6^{\text{th}} - 10^{\text{th}} \text{ Dec } 2004$ 



### **Talk Outline**

- Facility overview
- Requirements for Beam Stability
- Source of orbit motion and passive measures taken
- Orbit control systems
  - Hardware (BPMs/corrector magnets)
  - Slow orbit correction scheme
  - Fast orbit correction scheme

International Workshop on Beam Stabilization

Grindelwald, Switzerland



### **Diamond Light Source**



- Diamond is a 3<sup>rd</sup> generation synchrotron light source
- Under construction in Oxfordshire, UK
- Open to Users Jan 2007
- Consists of:
  - 100 MeV Linac
  - 100 MeV to 3 GeV Booster synchrotron
  - 3 GeV storage ring

International Workshop on Beam Stabilization

Grindelwald, Switzerland



### **Diamond Light Source**



| DBA                  |
|----------------------|
| 3 GeV                |
| 561.6 m              |
| 6 Fold               |
| 24 cell              |
| 27.23/12.36          |
| 2.7nm.rad            |
| 5.3m/8.3m            |
| 9.6x10 <sup>-4</sup> |
|                      |

International Workshop on Beam Stabilization

Grindelwald, Switzerland



### **Requirements for Beam Stability**

- High brightness photon beam requires small electron beam size
- Specification is the beam motion is less than 10% of beam size at source points
- In standard straights:

$$\beta_{y} = 1.53m, \ \kappa = 1\%, \ \varepsilon_{y} = 27 \ pm.rad$$
$$\Rightarrow \sigma_{y} = 6.4 \ \mu m \quad \sigma_{y}' = 4.2 \ \mu rad$$
$$\Rightarrow \Delta y < 0.6 \ \mu m \quad \Delta y' < 0.4 \ \mu rad$$

International Workshop on Beam Stabilization

Grindelwald, Switzerland



#### **Sources of beam motion**

| Source                                                                                                     | Measures Taken                                                                                                         |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Ground motion<br>(settlement (<125µm per 10m per year),<br>water table, vibrations (<0.5µm pk to pk ))     | Piled building foundations (see later slide)                                                                           |
| Thermal changes<br>(BPMs can move ~a few µm)                                                               | Air temp controlled to 22+/-0.5 deg C<br>Water temp controlled to 30+/-1 deg C                                         |
| Magnet misalignment<br>(magnet displacement ~100µm gives CO<br>errors ~a few mm)                           | Magnets mounted on girders (+/-70µm<br>magnetic centre to girder alignment)<br>Girders positioned by survey (+/-100µm) |
| Mechanical vibrations<br>(from e.g. crane movement, water flow in<br>cooling pipes, power supplies (50Hz)) | Anti-vibration mounting where necessary                                                                                |

Remaining motion corrected by closed orbit feedback schemes

International Workshop on Beam Stabilization

Grindelwald, Switzerland



## **Building Foundations**

- Final Solution for Building Foundations
- Void between slab and ground
  - Eliminates local distortion due to ground swelling
- Piled Foundations
  - ~3m spacing, ~11m deep
  - Reduces settlement
- Continuous slab
  - 850mm thick in SR tunnel
  - 600mm thick in hall
  - Reduces elastic deformation under load
  - Improves dynamic performance



International Workshop on Beam Stabilization

Grindelwald, Switzerland



### **Ground Vibration Measurements**

- Integrated ground motion of bare site is 12nm in 1-100Hz frequency band *(measured before construction started)*
- Plan to take new measurements in building during Dec 04/Jan 05
- Measure vibrations at various locations and for several different scenarios



- This will give good baseline measurements and characterize ground vibrations before accelerator components are installed
- Aids identification of new noise sources

International Workshop on Beam Stabilization

Grindelwald, Switzerland

 $6^{\text{th}} - 10^{\text{th}} \text{ Dec } 2004$ 



# **Storage Ring Girders**

- 5 degrees of freedom for girder alignment using cam system
  - heave +/- 5mm
  - sway +/- 7.1mm
  - pitch +/- 4.1 or 3.0 mrad
    - yaw +/- 5.9 or 4.3 mrad
  - roll
- +/- 7.0 mrad
- Uses cone-V-flat system
- Range of motion limited by bellows





- Horizontal Vertical Positioning System installed
  - range +/-2mm, resolution +/-1µm
- Possible upgrade to Hydrostatic Levelling System

International Workshop on Beam Stabilization

Grindelwald, Switzerland



### **Storage Ring Girders - Static Tests**



| Random Error        | Amplitude     |
|---------------------|---------------|
| Magnet Alignment    | 0.03mm (RMS)  |
| Bend/Quad Roll      | 0.2mrad (RMS) |
| Girder Displacement | +/-0.1mm      |
| Dipole Field        | +/-0.1%       |

- The systematic misalignments due to girder deflections under the weight of magnets have been modelled
- Resulting max/RMS quad displacements are 30µm/18µm
- Investigated how they affect closed orbit distortions, linear coupling and vertical dispersion
- Effects negligible, when compared to effects of additional random errors

| Uncorrected<br>Parameter | Just<br>Random<br>Errors | Random Plus<br>Systematic<br>Errors |
|--------------------------|--------------------------|-------------------------------------|
| RMS vertical CO          | 1.80mm                   | 1.81 mm                             |
| RMS linear coupling      | 2.52%                    | 2.52%                               |
| RMS vertical dispersion  | 4.56mm                   | 4.56 mm                             |

International Workshop on Beam Stabilization

Grindelwald, Switzerland



#### **Storage Ring Girders - Dynamic Tests**

- Fundamental modes of girders measured by LTC
  - 29 Hz (lateral rocking of support pillar B and flexure of the beam)
  - 38 Hz (lateral rocking of support pillar A and flexure of the beam)
  - 59 Hz (1st bending mode of the beam lateral and vertical components)
  - 77 Hz (lateral bending mode)
  - 88 Hz (vertical bending mode)

- Transfer functions from 20-100Hz measured with dummy magnets
- Tests with real magnets still to be carried out



International Workshop on Beam Stabilization

Grindelwald, Switzerland

 $6^{\text{th}} - 10^{\text{th}} \text{ Dec } 2004$ 



# **Orbit Control Systems**

International Workshop on Beam Stabilization

Grindelwald, Switzerland



#### **Beam Position Monitors**



- Locations decided from phase advance, beta functions and engineering considerations
- Resolution 0.3µm in normal mode, 3µm in turn-by-turn mode (current dependant)
- First turn capability



Horizontal Phase Advance and Beta Functions

20

BPMs

International Workshop on Beam Stabilization

Grindelwald, Switzerland



#### **Primary Beam Position Monitors**



International Workshop on Beam Stabilization

Grindelwald, Switzerland



#### **Standard Beam Position Monitors**



International Workshop on Beam Stabilization

Grindelwald, Switzerland



### **Correctors in Sextupoles**



- 168 combined function correctors housed in sextupoles (7 per cell)
- 0.8 mrad deflection at 1 Hz
- 18 Bit resolution for power supplies
- 2mm thick stainless steel 316 LN vacuum vessel
- Available for Day 1



International Workshop on Beam Stabilization

Grindelwald, Switzerland



#### **Fast Corrector Magnets**



International Workshop on Beam Stabilization

Grindelwald, Switzerland



### **Orbit Correction Scheme**

- Diamond will use GLOBAL orbit correction
- SVD based algorithm to invert response matrix
- Flexibility over number of eigenvalues to use





International Workshop on Beam Stabilization

Grindelwald, Switzerland



### **Slow Orbit Correction**

- Storage Ring has been modelled under various scenarios:
  - Expected magnet field errors
  - Expected magnet alignment tolerances
  - Effects of ground motion (Fourier, Gaussian, ATL)
  - Effects of mounting magnets on girders

| Error Type – With Girders         | Size                |
|-----------------------------------|---------------------|
| Girder Transverse Displacement    | +/-100 μm           |
| Girder Longitudinal Displacement  | +/-200 μm           |
| Element Transverse Displacement   | σ = 30 μm           |
| Element Longitudinal Displacement | +/-500 μm           |
| Dipole Field Error                | +/-0.1 %            |
| Dipole / Quad Roll Error          | $\sigma$ = 0.2 mrad |
| BPM Transverse Displacement       | σ = 50 μm           |
|                                   |                     |

International Workshop on Beam Stabilization

Grindelwald, Switzerland



### **Slow Orbit Correction – With Girders**

Closed Orbit in Straights

| Uncorrected | Maximum | RMS     |
|-------------|---------|---------|
| Horizontal  | 10.1 mm | 2.3 mm  |
| Vertical    | 2.9 mm  | 0.7 mm  |
| Corrected   | Maximum | RMS     |
| Horizontal  | 0.20 mm | 0.05 mm |
| Vertical    | 0.19 mm | 0.06 mm |

Corrector Strengths

| Plane      | Max Correction | <b>RMS</b> Correction |
|------------|----------------|-----------------------|
| Horizontal | 0.14 mrad      | 0.03 mrad             |
| Vertical   | 0.14 mrad      | 0.03 mrad             |

- RMS CO distortions from ~2mm to ~50µm in straights
- BPM positional accuracy limiting factor



Corrected Orbits (Straights)

International Workshop on Beam Stabilization

Grindelwald, Switzerland



### **Dispersive Orbit Correction**

- Dispersive orbit correction is to be done by adjusting the RF frequency
  - The mean fractional energy deviation dP/P can be found from a 1D least-squares fit to the BPM data
  - This dP/P corresponds to a frequency change of df
  - Once df exceeds a certain magnitude, a change is made to RF frequency
- The dispersive orbit is subtracted from measured BPM data, and the dipole correctors are then only used to correct the closed orbit errors
- Helps to minimise the influence of closed orbit correction on the beam energy and dispersion

International Workshop on Beam Stabilization

Grindelwald, Switzerland



## **Dynamic Orbit Correction**

- Expect correctors in sextupoles to be operated at higher frequency, up to limits imposed by vacuum chambers, signal processing and data transfer speeds
- 96 dedicated fast correctors will be added at the ends of the straights for fast orbit correction.
- These can be used in various ways depending upon the particular requirements:
  - Used as part of GLOBAL correction scheme in conjunction with correctors in sextupoles
  - Used locally on individual beam-lines at high frequency
  - Used in feed forward schemes
- Hardware will be in place, and there is flexibility in deciding how it is used

International Workshop on Beam Stabilization

Grindelwald, Switzerland

 $6^{\text{th}} - 10^{\text{th}} \text{ Dec } 2004$ 



### **Dynamic Correction - Simulations**

- Modelled with 0.2 µm RMS displacement on quadrupoles, sextupoles and BPMs
- Vertical beam size of 6.4 µm is tightest tolerance in straights
- Vertical divergence of 2.6 µrad tightest tolerance in dipoles
- Correction limited by BPM resolution

| Beam Size | σ <sub>X</sub> (μm) | σ <sub>x</sub> '<br>(µrad) | σ <sub>Υ</sub> (μm) | σ <sub>γ</sub> '<br>(µrad) |
|-----------|---------------------|----------------------------|---------------------|----------------------------|
| IDs       | 123                 | 24.2                       | 6.4                 | 4.2                        |
| Dipoles   | 36.8                | 87.2                       | 24.5                | 2.6                        |

| Residual Motion | X <sub>rms</sub><br>(μm) | X' <sub>rms</sub><br>(µrad) | Υ <sub>rms</sub><br>(μm) | Y' <sub>rms</sub><br>(µrad) |
|-----------------|--------------------------|-----------------------------|--------------------------|-----------------------------|
| IDs             | 0.23                     | 0.05                        | 0.23                     | 0.05                        |
| Dipoles         | 0.29                     | 0.26                        | 0.26                     | 0.23                        |



Grindelwald, Switzerland





Vertical Beam Motion in Dipoles Correctors in Sextupoles



# **Top-Up Operation**

- Diamond has been designed with future top-up operation in mind
- Top up provides constant heat load on accelerator components, and eliminates current-dependent effects for diagnostics
- Requirements:
  - Reliable injector
  - Closure of injection bump
  - High injection efficiency

| Magnet | Parameter                  | Specification |
|--------|----------------------------|---------------|
| Kicker | Bend angle                 | 0.45 deg      |
| Kicker | Peak to peak repeatability | +/-0.5%       |
| Kicker | Mismatch                   | +/-0.2%       |
| Kicker | Roll error                 | 0.2mrad       |
| Septum | Bend angle                 | 8.5 deg       |
| Septum | Peak to peak repeatability | +/-500ppm     |
| Septum | Leakage Field              | +/-50µTm      |
| Septum | Roll error                 | 0.2mrad       |
|        | Nominal bump size          | 13.7mm        |

 Collimators to be installed in BTS and SR injection straight to control emittance and energy spread

International Workshop on Beam Stabilization

Grindelwald, Switzerland



### **Acknowledgements**

• Diamond/ASTeC Accelerator Physics Groups

Riccardo BartoliniMahdia BelgrouneJames JonesHywel OwenSue SmithJenny Varley

David Holder Beni Singh Naomi Wyles

- Diamond Engineering Group
- Diamond Diagnostic Group
- •

International Workshop on Beam Stabilization

Grindelwald, Switzerland





International Workshop on Beam Stabilization

Grindelwald, Switzerland

