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Super-SOR Project

• The Super-SOR project aims to construct a 3rd-generation VUV and soft X-ray
   synchrotron radiation source in Japan.
• Proposed site is in the new campus of the University of Tokyo (Kashiwa campus).



Plan View of Super SOR Light Source
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Super-SOR Accelerators

• Designed to meet top-up injection
• Pre-Injector  Linac:
     E=200MeV, Single- and Multi-bunch modes
• Booster synchrotron :
     E=0.2-1.8GeV, εx=50-100 nm rad
     Variable momentum compaction (α=0.003-0.01)
• Storage ring :
     E=1.8GeV, εx=7-8 nm rad, I=400mA
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Super-SOR Storage Ring

• 14 DBA cells with 2 x 17m and 12 x 6.2m long straight sections
• Flexible optics with high- and low-beta straight sections
• Vertical beam size at insertion devices : σy = 10 - 30 µm

(a) High-beta mode

(b) Hybrid mode

Optics of half ring

Design Goal of Orbit Feedback System

• Fast and High-resolution Beam Position Measurement
�Resolution < 1 µm  @  sampling rate  > 2 kHz

• Wide Frequency Range �
�BW > 100Hz ( Noise attenuation: < -20dB @ 10Hz )

• High Position Stability at Insertion Devices
�New orbit correction scheme

�⇒ Submicron Stability



Outline of Orbit Feedback System
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New Orbit Correction Scheme

Vector of residual COD:

(1)
y : beam position before correction (M)
θ : kick angle of steering magnet (N)
R : Response matrix (M x N)

Constraint conditions:

(2)

Minimize the norm of ∆ under the constraint conditions by
introducing the following function of S (Lagrange’s
method of indeterminate multipliers).

(3)

Set derivatives of the function S with respect to θ  and µ to
zero.

               (4)
(5)

Solution of the above equations:

(6)

where

                                  (7)
                                  (8) 

              (9)

Definition of the matrix A-1 :

    �� (NV ≤ N),              (10)

vi : i-th eigenvector of the matrix A
λi : i-th eigenvalue of the matrix A

For λi~0, 1/λi in the matrix A-1 is replaced with zero to
avoid very large kick angles. The condition of NV ≥ NC is
required for the existence of the inverse matrix P-1.

If z is taken as the electron (or photon) beam positions
measured at arbitrarily selected BPMs (or photon BPM)
and C as the corresponding response matrix, the beam
positions at the selected BPMs are fixed at zero by this
correction.  For the electron beam and BPMs, Eq. (6) can
be rewritten in a simplified form�

                                                                             (11)
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→  See Proceedings of EPAC98 and PAC99



Orbit Correction Simulation

⇒  Simulations confirm that the global and local corrections are compatible in the new method.

(1) COD sources are all the quadrupole magnets with vertical position errors of σ=50 µm.
(2) Constraint conditions are that positions at 28 BPMs on both sides of 14 long straight sections are zero.
(3) 140 BPMs and 70 fast steering magnets are used for correction simulations.
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Orbit Correction Study at PF ring (1)
Experimental study of the new orbit correction method at PF ring

       Outline of correction study
1. Vertical COD is artificially

generated by each vertical dipole
and then several times corrected by
28 fast steering magnets using
eigenvector methods with and
without constraints. The number of
the used eigenvectors is 14.

2. Constraint conditions are that beam
positions at 4 BPMs on both sides of
the two long straight sections are
zero.

3. Measured response function is used.
4. RMS CODs for the constrained 4

BPMs and for all the BPMs are
obtained for the two kinds of
correction methods.

      VD12
FS09 FS24

VD33
BPM16
BPM17

BPM50
BPM49

PF ring (2.5GeV)
 65 BPMs
 4 constrained BPMs 
 (BPM01,41,42,65)
 28 Fast Steering Magnets(FSs)
 42 Vertical Dipoles(VDs)



Orbit Correction Study at PF ring (2)
Example of vertical COD before and after correction 
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Orbit Correction Study at PF ring (3)

1 µm

⇒  Local correction performance of the new method is a sub-micron level !

⇒  Global correction performances of the two methods are almost the same.
(The global correction performance for VD 40 - VD05 can easily be compensated by adding 1 or 2
steering magnets in the section.)
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Orbit Correction Study at PF-AR Ring (1)

Experimental study of the new orbit correction method at PF-AR ring

     Outline of correction study
1. Vertical COD is artificially

generated by each vertical dipole
(VD) and several times corrected
by the other 78 VDs using
eigenvector methods with and
without constraints. The number
of the used eigenvectors are 40.

2. Constraint conditions are that
positions at 6 BPMs on both sides
of the three long straight sections
are zero.

3. Measured response matrix is used.
4. RMS CODs for the 6 BPMs and

all the BPMs are obtained for the
two kinds of correction methods.
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PF-AR ring (6.5GeV)
 83 BPMs (total)
 6 constrained BPMs
 (BPM25,26,36,37,41,42)
 79 Vertical Dipoles(VDs)

Orbit Correction Study at PF-AR Ring (2)

BPM
Resolution
(~8µm)

BPM
Resolution
(~8µm)

⇒  Local correction performance of the new method is better than BPM resolution.

⇒  Global correction performances of the two methods are almost the same.
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BPM System (1)

Example of BPM location

Prototype of BPM support

BPM
Bellows

Absorber flange

SR

Cooling water

• BPM block (SUS) with SMA feedthroughs  
• Fixed on the girder by BPM support
• Reduction of vacuum chamber stress by bellows 
• Protection from SR irradiation by absorber

Prototype of BPM block

BPM System (2)

Design of BPM Electronics using Multiplexing & Heterodyne method
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• S/N is more than 90dB at 200mA ( < 0.3µm in resolution).

• Single-bunch operation is also considered.

• BPM signals can be switched to another system for turn-by-turn measurement.

PROBLEMS

• Position error by coherent synchrotron oscillations

• Cost effectiveness

⇒ Another type of BPM electronics is also under consideration.



Fast Steering Magnet System (1)

Prototype of Fast Steering Magnet
Power Supply Models for Fast Steering Magnets 
 Upper : Switching type
 Lower : Linear amp. type

• Fast steering magnet is made of 0.5-mm silicon steel laminations.
• Two types of power supply (linear amp. and switching types) are tested.
• Linear amp. type is superior to switching type in ripple noise.

Fast Steering Magnet System (2)

Steering magnet + Bellows duct
Measured frequency response

• All the fast steering magnets are installed on the RF-shielded bellows ducts.
• Bellows duct is made of stainless steel and RF shields of 0.4mm-thick BeCu.
• Effects of bellows on frequency response are negligibly small.
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Feedback Control System (1)

Local controller x 2 (prototype model) Block diagram of local controller

• Target feedback period Ts < 0.5ms (sampling rate > 2 kHz)
• 140 BPM data are shared with all the controllers by a shared memory network.
• CPU board computes beam positions at 10 BPMs and coil currents of 5 FSs.

Feedback Control System (2)

Measurement result of consumed time for each feedback process

⇒  Feedback period of less than 0.2 ms can be achieved.
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Noise Attenuation
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⇒  Frequency Bandwidth > 100Hz

Summary

• An orbit feedback system is planned for the Super-SOR
project to suppress the brilliance reduction due to orbit drifts
and vibrations. Final goal is sub-micron stability at the source
points and at the experimental stations.

• A new orbit correction method, the eigenvector method with
constraints (“EVC” or “SVDC”), can unite global and local
orbit feedbacks and enhance the beam stability at insertion
devices up to a sub-micron level.  We will try to stabilize
photon beams using this correction method and photon BPMs.

• Design and R&D of the BPM, fast steering and feedback
control systems are in progress. The feedback system can
achieve position resolution of less than 1µm and the frequency
bandwidth of more than 100 Hz.


