Recent development in orbit stability and the feedback system at KEK Photon Factory and PF-AR

T. OBINA / Photon Factory, KEK

1-1 Oho Tsukuba, Ibaraki Japan

Overview

- Group/Member
 - ◆ Control: T.Obina
 - ◆ Monitor: T.Honda, K.Haga, M.Tadano
 - Magnet: Y.Kobayashi, K.Harada, T.Miyajima, S.Nagahashi
 - ◆ ID: S.Yamomoto, K.Tsuchiya, T.Shioya
 - Head of Light Source division: T.Kasuga
 -and many other contributers....
- 1) Photon Factory(PF)
 - 1-1) Orbit stability
 - 1-2) Feedback system for new undulator
- 2) PF-AR(PF-Advanced Ring)
 - 2-1) Orbit stability
 - 2-2) Injection with Pulsed-Quadrupole Magnet

Main Parameters

			PF	PF-AR
Energy		E [GeV]	2.5	6.5
Circumference		C [m]	187.07	377.26
Emittance		ε_{o} [nm×rad]	35.78	295.17
Energy Spread		$\sigma_{\! extsf{E}}/E$	7.28474E-04	1.14586E-03
Momentum Compaction		α	6.16870E-03	1.27625E-02
Betatron Tune				
	horizonta	$ u_{\chi}$	9.66	10.15
	vertical	$ u_{y}$	4.25	10.19
Synchrotron Tune		$ u_{\scriptscriptstyle \mathbb{S}}$	0.0142295	0.0567625
Chromaticity				
	horizonta	ξ_{x}	-12.570	-14.250
	vertical	ξ,	-11.529	-13.159
Energy Loss		U_0 [keV/rev.]	398.853	6660.751
Damping Time		F 7	7.707	0.454
	horizonta	τ_{x} [msec]	7.787	2.454
	vertical	τ_{v} [msec]	7.822	2.457
D 1.: E	longitudin	τ_z [msec]	3.921	1.230
Revolution Frequency		f _{rev} [MHz]	1.60253	0.79466
RF Frequency		f _{RF} [MHz]	500.100	500.100
Harmonic Number		h \/ [N4\/]	312	640
RF Voltage		V _{RF} [MV]	1.70	17.30
Bunch Length RF Bucket Height		σ_z [mm]	9.40128	15.40534
Kr Ducket Heigi	ill .	(∆E/E) _{RF} [%]	1.217590	0.992220

1-1) Orbit Stability at PF-Ring

- Fast orbit feedback system works very stably
 - Global Feedback Cycle: 12ms
 - BPM resolution: 3um(peak-peak, 1sec)
 - Please refer to IWBS2002 proceedings
- There are no significant improvement after IWBS 2002 except for...
 - Increase # of eigenvalues: 8 -> 12
 - Max 28 (65BPM x 28Correctors)
- New Project: Upgrade of straight section
 - Shutdown Mar/2005 Sep/2005
 - Main purpose
 - Increase number of straight section
 - Magnet triplet -> doublet + short straight section
 - Number of IDs 7 -> 11 + 2 short
 - Replacement of VERY old instruments ... more than 20 years!!
 - number of BPMs, Correctors will be increased
 - We are now designing new data acquisition system

1-2) Local Feedback System for New Undulator

- New Undulator for circular-polarized beam
 - Switch right-handed/left-handed/linear polarization
 - Use mechanical switching
 - not Apple-II type
 - Chevron switch
 - Switching speed: 0.8Hz
- Unfortunately, this undulator was installed in the PF ring only for several months another undulator have been used for users operation.

Movie

External File

FB system

- Limitation:
 - No time/budget.....
 - We used existing CAMAC modules
 - ◆ FB cycle 50Hz
 - No start trigger for encoder output
 - GPIB control only
- Control/Data Acquisition
 - EPICS based system

Feedforward+Feedback

Next step...

- This undulator will be installed in PF-AR
 - 1.5 year later
- Increase Encoder output resolution
 - 12bit -> 16bit
- Increase FB cycle
 - 50Hz -> 1kHz
 - ADC+FPGA+DAC system on cPCI (PXI)
- Improve analog front-end circuit
- How to avoid the interference of Global Orbit FB?
 - PF-AR : no problem
 - slow COD measurement/correction in every 10sec

2-1) PF-AR Status

- More than 20 year old machine
- PF-AR Upgrade Project in 2001
 - Replace Vacuum duct => Increase lifetime
 - Increase number of ST-mag => Orbit correction
 - No (or limited) budget for
 - Power supply of large magnet (B,Q,S)
 - RF Cavity
 - BPM electronics/Fast orbit correction
- We are still using
 - Old BPM-switching system
 - Replaced Mechanical SW->Mercury SW
 - Reliability of the measurement is greatly improved!!
 - Old detection circuit
 - We can measure/correct COD in every 10sec

2-2) PF-AR Injection system with Pulsed Quadrupole Magnet

- Advantage of PQ-Magnet Injection system
 - Only 1 magnet is enough for beam injection
 - Easy operation
 - Accuracy of manufacturing is not severe
 - Cost effective
 - No need for the Injection bump
 - No coherent oscillation on the stored beam

New Global Standard for Top-up Injection!!

Why Pulsed-Q injection in PF-AR?

- In PF-AR, top-up injection is IMPOSSIBLE due to the limitation of beam transport line.
 - Injection: 3GeV / Users operation: 6.5GeV
- Coherent oscillation of the stored beam will produce the wakefield
 - Limit the maximum beam current: 65mA

↓ We are interested in:

Can we inject the beam with 1 Pulsed-Q magnet? Can we break the upper limit of the stored current?

↓ Next step:

Test top-up injection at the other facility

Principle of PQ injection

- A quadrupole magnet has zero field strength at the magnetic pole center and the field strength is proportional to the amplitude of the beam.
 - Stored beam -> passing through center -> no kick
 - Injected beam -> off-axis orbit -> kicked
- Without using the bump orbit by 4- (or 3-) kicker magnets, we can inject the beam.

Orbit of injected beam 60 with Ki with Po 40 Aemplitude of the beam [mr 20 0 -20 -40 -60 50 0 100 150 200 250 300 350 Orbit length [m] (1 turn = 377m)

Amplitude of injected beam: almost same as kickers

Optimization of PQ location

- The oscillation of the injected beam is almost linear even with large amplitude at PF-AR. We can consider the oscillation of the injected beam as a "harmonic oscillator" by using Courant-Snyder invariant (injection emittance).
- We must install before the amplitude of injected beam becomes to its maximum value.

Main Parameters of Pulsed Q magnet

Magnet			
Magnet		000	
	Length	300	mm
	vertical bore	36	mm
	Horizontal bore	104	mm
	turn number	1	turn
	number of coils	4	
	field gradient	3	T/m
	current	2000	Α
	peak current	4000	Ар
	inductanc	1.8	uН
Power Supply			
	output current	-4000	A (peak)
	Pulse shape	half sine,	25PPS
	Pulse width	2.4	usec

Field Calculation

450Gauss = 3T/m, at 15mm 1 1mrad kick

Typical Pulse Shape

Installation and Beam Test

- ◆ Summer/2004
- Installed at south straight section of PF-AR
- Pulse shape have modulated a little because the cable length between PQ and PowerSupply is not equal to the optimum length due to the limitation of the location (for now).
- Beam Test
 - 15/Nov/2004 and 29/Nov/2004
 - total 12Hrs
 - with stored beam
 - with injected beam
- Preliminary result next page

Beam Current

- Local bump were applied in order to match the center of PQ magnet and the position of the stored beam.
- Amplitude of the stored beam have been reduced!
- Residual oscillation still exists.... we will try again
 - We had some trouble in orbit correction system during the experiment....

•

We can inject over 30mA (next page)

Next step ...

- Continue machine study
- Optimize local bump orbit
- Maximize beam current/injection rate
 - maximum current is smaller than the normal operation at the last experiment. we will investigate more.
- Next week:
 - Observation of injected beam with fast gate camera