FAST ORBIT CORRECTION AT THE ESRF

Eric Plouviez on behalf of: J. Chavanne, J.M. Koch, J.L. Pons, F. Uberto, L. Zhang

Orbit stability requirement

ESRF is a 3rd generation light source:
 Energy: 6GeV
 Circumference: 844.39m / 32cells
 Horizontal and vertical emitance: 4nm and 30pm
 Position stability must match this emitance figure Stability criterion
 Less than 20% emitance growth or:
 <10% beam size increase
 <10 % beam divergence increase

More stringent demands at high frequency from some beamlines

FAST/SLOW correction management:

- 1 ESRF solution:
- 1 2 independent systems:
- 1 Slow system with 224 BPMs/96 correctors from 0 to .1Hz
- 1 Fast systems from .2 to 100 Hz
- 1 Frequency separation between the slow and fast system
- Addition of a feed forward angle corrections during ID gap change on some straight sections to improve the orbit settling time in the .2 to .02 Hz range
- 1 Choice due to circumstance, but it works fine

We have recently upgraded our fast global feedback to damp the horizontal and vertical orbit distortions from .1 to 200Hz

Situation before the global feedback upgrade

Vertical global feedback system

• Aimed at bringing back the fast vertical motion to less than 10% of the beam size

•20 nm/Hz^{1/2} BPM resolution (1 μm in 2 KHz BW)
•.1 to 150 Hz feedback bandwidth

• (separation from the slow correction in the frequency domain)

4.4 KHz sampling and correction rate

•Air cored magnets and 2mm thick stainless steel vessel

·low signal latency in the loop: .6mS

1 4 horizontal local feedback systems

Installed from 1999 to 2001 on sensitive beam lines:

- **1** ID14: Protein cristallography
- 1 ID21: X-ray microscopy
- **ID8:soft X ray spectroscopy**
- 1 ID24 X ray absorption spectroscopy

Same type of BPMs and steerers as the global feedback

efficiency

- a limited number of monitors and correctors can correct all the machine => global scheme = undersampling
- According to simulations 16 monitors and correctors are enough in the vertical plane (Q=14.39)
- Rule of thumb:
 Number of BPM corrector needed = Q

Vertical global feedback layout

Vertical correction only

4.4 KHz sampling and correction rate

150 Hz feedback bandwidth

Achieved damping: 2 (.1 to 100 Hz)

Residual movement: 12% of the beam size

Spectrum of the motion on the sample:

Damping pads on the magnets girders

Damping pads on the magnets girders

·-20dB reduction of the 7Hz

• less reduction of the 30Hz: it is due to the water flow in the quadrupoles coils

Feedforward correction: ID gap dependant CO distortion

- **A good solution for the .03 to 3Hz span without feedback**
- 1 Used to take care of the transient orbit distortion due to the gap change of some insertion devices:
- 1 Measurement of the closed orbit distortion for every ID gap opening values during calibration sessions
- 1 Calculation of a correction using 2 correction dipoles at both end of the straight section for every gap opening values
- 1 Application of this additional correction as a function of the gap opening in operation (update rate of the correction: 10Hz

Limitation of our correction system

Vertical global feedback system

Victim of the success of the damping pads installation:

The resolution of the BPMs was now too close to the amplitude of the vertical beam motion without feedback!

- horizontal local feedback systems
- ID24 X ray Absorption Spectroscopy bealine got the first system
- Others beam lines requested horizontal correction:

Eventually crosstalk between the systems due to imperfect bump closure at high frequency started to appear, setting a limit to the number of local feedback systems, but not to the number of beam lines interested by a feedback....

Global feedback upgrade

2001 situation:

- We want to improve the resolution of the vertical orbit distortion measurement
- We wish to have the same low horizontal beam motion amplitude as in the straight sections corrected by the local feedback all over the machine

Solution:

- We need a global feedback in both planes (no more local feedbacks).
- => We must increase the number of BPMs and correctors (since Qx=36.44) and the DSP processing power

Feedback efficiency

measured at the end of high horizontal β straight section

	β (in	m)	rms motion without feedback (in μm, .1 to 200Hz)	rms motion with feedback (in μm, .1 to 200Hz)	rms motion/ rms size
H plane	36		5 to 12 (depending on BPM)	1.5 to 2.5 (depending on BPM)	.004 to .006
V plane	6.5		1.5 to 2.5 (depending on BPM)	.8 to 1.2 (depending on BPM)	.1

Feedback bandwidth: .1Hz to 150 Hz Beam H and V emitance: 4nm and .03nm

V plane results:

H plane results: correction better than with the local feedback at the feedback BPM locations

Feedback efficiency

rms stability in 2 sensitive ID straight sections:

Left : no feedback Right: both feedbaclk applied

red and brown: horizontal rms position variation blue and green: horizontal rms position variation

Integrated from .1 to 200Hz

Next steps

- Addition of a selective damping of the 50Hz line in the DSP algorithm
- Addition of more diagnostics functions (triggering of the BPMs recording on external events...)

Conclusion

With a mix of feedforward action on the orbit perturbations, passive damping of the vibration of the magnets, and a fast orbit correction with a global feedback, we manage to still have a state of the art beam stability (even if our BPMs are now a bit outdated...).

System size for fast global correction: All you need is:

- 1 4 KHz sampling for 200Hz BW
- 1 BPM and correctors number roughly equal to the integer of the tune value