EBPMs and Orbit Feedback Electronics for Diamond

IWBS 2004 Guenther Rehm

diamond

Outline

- BPM locations and cross sections
- BPM response calculations
- EBPM performance examples
- SOFB plans
- FOFB plans

Number of **BPMs**

Location	Count	Type / cross section
LINAC	0	-
LTB	7	Stripline / circular
Booster	22	Button / elliptical
BTS	7	Stripline / circular
SR	120+48	Button / octagonal+oval
Sum	204	

All with Libera EBPM electronics

Storage ring BPMs

- Primary BPMs:
 - Increased sensitivity through smaller aperture
 - Mechanically decoupled through bellows
 - Position monitored relative to reference pillar
- Standard BPMs:
 - BPM blocks welded into vacuum vessel
 - Mounted on "anchor" stands
 - Position monitored relative to guad centre

BPM response calculation

- MATLAB based boundary element solver
 - Fast: 5.5 sec on P4/1700 for 722 boundary elements and 441 beam positions
 - Precise: results checked with finite element solver (Vector Fields OPERA)
- Geometrical manufacturing uncertainties have been modelled using Monte Carlo simulation

Calibration Factor for Primary BPM

Nonlinear 2D BPM response

BPM reading real position

 \bigcirc

10 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 9 \mathbf{x}^{\bigcirc} \otimes \bigotimes \mathcal{Q} \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc Ŏ ð 8 ð Needs to be ×O × \bigcirc \bigcirc Ox \bigcirc × O × × \bigcirc × corrected Q ×O X Q \bigcirc \bigcirc \bigcirc beam y offset [mm] X O × before 6 - 关 \bigcirc ð \bigcirc \bigcirc \bigcirc \bigcirc nonlinear \bigcirc Q 5 - \mathbf{O}_{X} \bigotimes \bigcirc \bigcirc beam 4 - 🛞 \bigotimes \bigotimes \mathcal{Q} \mathbf{x} dynamics 3 \otimes \bigotimes \otimes \bigotimes 0 studies! 2 \otimes \otimes \otimes \bigotimes \bigotimes ×O $\times \circ$ \bigcirc 1 \otimes \otimes \otimes \otimes × O × \mathbf{v} \bigcirc \bigotimes хO \bigcirc 0 (\times) \times \times \bigcirc \otimes \otimes \otimes () $\times \times \times \times \times$ \bigcirc 2 4 6 8 10 0 beam x offset [mm] $\langle \phi \rangle \langle \phi \rangle \langle \phi \rangle$ diamond **Guenther Rehm**

RMS noise @ TBT

3W38 2004

Resolution with 1 kHz BW

RMS noise with 1 kHz Bandwidth

Beam current	Primary x/y in µm	Standard x/y in µm
60-300 mA	0.27/ 0.3	0.65/0.45
10-60 mA	0.54/ 0.6	1.3/0.9
1-10 mA	1.35/ 1.5	3.3/2.2

Control and Instrumentation Areas (CIAs)

24 temperature stabilized CIAs for 19" racks

SOFB Details

- EPICS IOCs run inside LIBERA
- EPICS interface to PSU already available
- MatLab channel access makes application development easy
- · Can be tested with "virtual accelerator"
- Expected to run at 10 Hz sampling, 0.5 Hz closed loop BW
- Will be available on day 1

Virtual Accelerator and Software Commissioning

The Virtual Accelerator is used

1) to simulate the control system environment as seen by the users

2) to provide a realistic test for AP applications

The Virtual Accelerator uses the **Tracy–II** code to simulate the physical behaviour of the ring

IWIS 2004

Basic Virtual Accelerator Functionality

- Set magnet currents
- Read EBPM x/y average calculated using Tracy2 closed orbit
- Read EBPM x/y turnby-turn buffer using Tracy2 particle tracking

"measured" Response Matrix

MatLab AT Based Feedback

Orbit Correct implemented using AT for Spear 3

Design constraints for FOFB

- Global system, all data should be available everywhere
- Low latency from hardware, main delay should result from LP filter
- FB algorithm should be easily serviceable
- Corrector PSU interface is VME
- Robust system which continues to perform with partial faults

FOFB Setup (one CIA)

Controls Network

FOFB Details

- FB data produced at 4-20 kSamples/s
- Dedicated FB CPU board MVME5500 running vxWorks, but no EPICS IOC, no network.
- RocketIO in Virtex2Pro to run at 2.5 Gbit/s
- PMC card with RocketIO will be board developed for timing system
- Connections inside rack can be galvanic, longer distance will be single mode fibre
- All connections between CIAs will be patched centrally
- Communication is broadcast, no routing or location information is required for any node.

FOFB Delays (simulated/estimated)

- Distribution of 168 sets of data to 168+24 locations: 30 µs
- Transfer to CPU: 10 μs
- Matrix multiplication: 30 μs (worst case)
- Write into PSU: 50 μs
- 200-400 µs delay for LP filter
 - > feedback BW >>100 Hz should be feasible
- Detailed simulation is required!

Acknowledgements

- DLS: Mark Heron, Ian Martin, Riccardo Bartolini, Tony Dobbing
- Instrumentation Technologies
- Supercomputing Systems

