Fast Orbit Feedback at the SLS

T. Schilcher, M. Böge, B. Keil, P. Pollet, V. Schlott

Outline

- (Initial) Stability Requirements
- Orbit Feedback Layout
- Fast Orbit Feedback Results
- Experiences / Limitations / Extensions

Stability Requirements

• Angular stability:

ΔΘ_{beam} < 1 μrad * * typical < 10 μm at the experiment

- Position stability: σ/10 at Insertion Devices (ID)

 low beta ID: vertical beam size ~10 µm (1% coupling)
 1 µm RMS in vertical plane
- **suppression** of orbit distortion up to 100 Hz by factor of >5
- fast compensation of orbit distortions due to ID gap changes

Fast Orbit Feedback Layout

- only one feedback
- 6 BPMs / 6 corrector magnets in each plane, 12 sectors
- decentralized data processing
- sampling and correction rate: 4 kHz
- point-to-point fiber optic ring structure for global data exchange
- initialization and control by beam dynamics application (BD server)
- Femto project: additional BPM(s) and corrector magnet(s)

- DSP processor: ADSP2106x (on the market since Sep. 1994)
- DDC: Intersil HSP50214 (on the market since ~1997)

FOFB: A highly sophisticated system

Required Subsystems:

- 72 DBPMs
- fast network for real time data exchange (24 modules)
- power supplies (144 PS + 24 VME interface boards)
- timing system (12 boards + ...)
- network
- control system (vxWorks, EPICS, Linux, Oracle DB)
- beam dynamics services
- "operator..." 😳

A failure in any subsystem will result in failure of the FOFB...

Performance: <u>Stability Frequency Ranges</u>

- short term stability: ~ 6 ms 1 s (1 Hz 150 Hz) mainly limited by
 - BPM resolution
 - corrector magnet resolution
 - system latency
 - eddy currents in vacuum chambers
- long term stability: 1 s days (run period) mainly limited by
 - reliability of hardware components
 - systematic errors of BPMs
 - thermal equilibrium of the machine (\rightarrow top-up)

Performance: Short Term Stability

transfer function measurement

FOFB: spectral power density (1-100 Hz)

(measured at tune BPM, outside of the feedback loop, $\beta_x = 11 \text{ m}$, $\beta_y = 18 \text{ m}$)

FOFB: Cumulated Power Spectral Density (1-150 Hz)

	horizontal		vertical	
FOFB	off	on	off	on
1- 100 Hz	0.83 μm · $\sqrt{\beta_x}$	0.38 μm · $\sqrt{\beta_x}$	0.40 μm · $\sqrt{\beta_y}$	0.27 μm · $\sqrt{\beta_y}$
100-150 Hz	$0.08 \ \mu m \cdot \sqrt{\beta_x}$	$0.17 \ \mu m \cdot \sqrt{\beta_x}$	$0.06 \ \mu m \cdot \sqrt{\beta_y}$	$0.11 \ \mu m \cdot \sqrt{\beta_y}$
1-150 Hz	$0.83 \ \mu m \cdot \sqrt{\beta_x}$	$0.41 \ \mu m \cdot \sqrt{\beta_x}$	$0.41 \ \mu m \cdot \sqrt{\beta_y}$	$0.29 \ \mu m \cdot \sqrt{\beta_y}$

RMS values to be scaled with $\sqrt{\beta}$ at desired location

Examples (with FOFB): Tune BPM (β_y =18 m): $\sigma_y = \sqrt{18} \cdot 0.29 \ \mu m = 1.2 \ \mu m$ (1 – 150 Hz) Source point at ID 6S (β_y =0.9 m): $\sigma_y = \sqrt{0.9} \cdot 0.29 \ \mu m = 0.28 \ \mu m$ (1 – 150 Hz)

Performance: <u>Short Term Stability</u> (external reference: Photon BPM at beamline 11M)

- power spectral density @ single PBPM blade
- no synchronous readout of all 4 blades yet to determine hor./ver. PSD

⇒ successful suppression of noise sources originating from the electron beam

Performance: Long Term Stability

Strategy:

• if photon BPMs are reliable enough

- ⇒ used to minimize systematic effects of RF BPMs, girder drifts, temperature drifts, etc.
- ⇒ slow PBPM feedback which changes reference orbit of FOFB (asymmetric bump)
- \Rightarrow keep photon beam position constant at first PBPM
- so far: only one PBPM at ID beamline 4S and 6S is reliable enough and understood to be integrated in PBPM feedback
- filling pattern feedback to keep bunch pattern constant

Filling Pattern Feedback

Standard SLS filling pattern:

- 390 buckets filled
- gap of 90 buckets

PAUL SCHERRER INSTITUT

Performance: Long Term Stability @ ID 65

FOFB: Experiences / Limitations

- arbitrary orbits possible (\rightarrow allows simple PBPM feedback)
- bigger feedback loop delays than expected (sample period: 250 µs)
 - data transfer from DSP to PSC via IOC: $\sim 100 \ \mu s$
 - substantial group delay in digital filters: $\sim 600 \ \mu s$
 - \rightarrow total loop delay of 1.5 ms
- \rightarrow slightly lower bandwidth than envisaged (0 dB @ 95 Hz) but: no dominant excitation lines in noise spectrum @80-100 Hz
- Mean Time Between Failures
 - hardware (DBPM/FOFB):1 failure/month
 - ctrl sys./network/user/operator: 1-3 failures/month
- "RF glitches" while adjusting the main RF frequency (IEEE interface of RF generator)

RF frequency change:

(peak offset values with respect to ref. orbit)

⇒ change of frequency requires different strategy (?)
(→ frequency modulation input of RF generator instead IEEE interface?)

FOFB: Extensions

- Femto project: requires additional BPM/corrector magnets in ID straight to guarantee the required orbit stability (Jul. 05)
- integration of photon BPMs into FOFB (\rightarrow IR beamlines)

Summary

- very flexible and reliable FOFB system
- suppressions of orbit distortions up to 95 Hz
- global orbit stability (1 150 Hz): vertical 0.41 $\mu m \cdot \sqrt{\beta_x}$ $\mu m \cdot \sqrt{\beta_v}$
- power spectral densities of photon BPMs: still to be measured
- residual variations of photon beam @ PBPM 6S: $\leq 7 \ \mu m_{pp}$ (long term)
- PBPM feedback @ beamline 4S, $6S \rightarrow <\pm 1 \mu m$ (long term)
- filling pattern feedback minimizes systematic errors of RF-BPMs, remaining systematic errors due to temperature dependency of RF-BPM electronic < ±1 μm/day @ RF-BPM
- substantial improvements for "easy usability"
- upgrade/extension for additional RF-BPMs (Femto) & photon BPM integration

SPring8: "Maybe we don't need a fast orbit feedback."

ALS: "The users didn't request a fast orbit feedback but we knew that we can do better..."

SLS: "We already have a stable beam and we need a fast orbit feedback to preserve it."