Report on internal "mini-workshop on beam stability at SLS"

The workshop was held at SLS on September, 9th 2004

It was intended to...

- review the original specifications for beam stability at SLS
- review the performance of the FOFB including all subsystems
- collect experience from users and operators
- define fields for improvements
- to discuss options for improvements
- to re-specify the future requirements for beam stability

The workshop was attended by

- beam dynamics and instrumentation
- users
- operations
- management

Report on internal "mini-workshop on beam stability at SLS"

Original requirements on SLS beam stability (as specified to BPM system in 1998)

- position stability of source point:	σ /10 of source size (vertical) e.g.: 1 μm at low-β IDs for 1% coupling
- angular stability of source point:	$\Delta \Theta < 1 \ \mu rad$
- long term stability (12 h):	± 2.5 μm (of electron beam)
- reliability:	high (but not explicitly specified)

Achievements of SLS beam stability (since beginning of 2004)

- position stability of source point:	~ σ/30 (vertical, 1-150 Hz) < 0.3 μm at low-β IDs (vertical, 1 – 150 Hz)
	~ σ/250 (@ 5 Hz) vertical ~ 0.02 μm global vertical orbit stability @ 5 Hz
- angular stability of source point:	$\Delta \Theta < 0.25 \ \mu rad \ (1 - 150 \ Hz, vertical)$
- long term stability (24 h):	2 μm (of electron beam)
- reliability:	 ~ 1 BPM failure per month (1 failure since September) < 3 FOFB subsystem failures per months (2 failures since September – user, network)
- signal integrity:	data verified by photon BPM readings discrimination of electrical (DBPM systematics) and mechanical effects (drifts) through POMS system

Report on internal "mini-workshop on beam stability at SLS"

The operations / operators point of view...

- excellent short and medium term <u>performance</u> of orbit feedback (FOFB)
- good DBPM long term stability and reproducibility of "golden orbit" even after shut-downs
- operators would appreciate easier handling of FOFB <u>but highly complex systems and the</u> <u>many options and possibilities, which are supported, demand conscious and elaborated use!!!</u>

- maintainability and reliability could be improved in terms of...

failure rate of DBPMstarget rate:< 1 failure per month (achieved since September)</th>faster HW exchangetarget:< 1 hour for electronics exchange</td>improved SW support for quick failure detection and analyses

- allow local bumps ("bump-scans") during user run within FOFB application

- calibration of DBPM system for low current operation and different SR filling modes

Report on internal "mini-workshop on beam stability at SLS"

The users point of view...

- beamlines / experiments can obviously be divided into 2 categories:

a) "large focus" ... ~ 100 μm
b) "μ-focus" ... < 10 μm (presently)
~ 20 nm (planned POLLUX beamline)

- <u>category a) beamlines</u> are in general happy with SLS beam stability (performance of FOFB)

- category b) beamlines

short term stability (hours to 100 Hz) is excellent – except from some occasional spikes (only reported from 06S protein crystallography)

top-up injection is visible (due to not perfectly closed injection bump) – gating...?

(directly) after shut-down (usually 1-2 weeks) photon beam is "only" back to ~ 10 μ m

no beamline operation possible without FOFB running !!!

- present energy resolution of SIM-beamline ($\Delta E/E \sim 10^{-4}$ to 10^{-5}) corresponds to ~ 1 µrad beam motion (short term). Future beamlines (ADRESS) will have $\Delta E/E \sim 10^{-4}$ to 10^{-5} and will thus need beam motion of < 0.1 µrad.

Report on internal "mini-workshop on beam stability at SLS"

(F)OFB and sub-systems performance and limitations

- for <u>FOFB performance and orbit correction concept</u>... see talks from Th. Schilcher and M. Böge

- (SLS) DBPM-system

most of the concept is still valid... but keep in mind, the system is "already" 7 years old!

Pros high flexibility of system HW and SW (almost) debugged systematics are known and/or eliminated Cons HUGE effort in SW development most of the components are outdated → difficult repair and upgrade(s)

 \rightarrow bandwidth and resolution limitations

- <u>Photon BPMs white beam diagnostics</u>
 - only used for...fixed (smallest) in-vacuum ID-gapswigglers and bending magnets

authenticity of data is questionable for... (low energy) undulator beamlines monitors need calibration, which is non-trivial and time consuming data need to be integrated in (F)OFB (synchronization!)

- Mechanical Movements (POMS)

POMS-data is available for discrimination of electronical drifts and mechanical movements only used for monitoring since <u>NO MECHANICAL DRIFTS IN TOP-UP OPERATION</u>

Report on internal "mini-workshop on beam stability at SLS"

Preliminary conclusions and outlook...

- original performance goals have been reached and even exceeded
 - → TOP-UP OPERATION REPRESENTS A MAJOR KEY TO BEAM STABILITY !!!
- reliability is pretty high / failure rate is fairly low... but could always be better
- trouble shooting could be improved... but keep in mind complex systems are never easy (to use)
- electronical signal chain has been decoupled from mechanical and thermal effects
 - \rightarrow most of the systematic effects in the electronics (DBPMs) could be eliminated
 - \rightarrow cascaded feedback scheme (including photon BPMs and filling pattern FB) could be applied
- μ -focus beamlines remain a real challenge... and there will be many more in the (near) future
- photon BPMs need more attention... new, better, more reliable monitors ?!
 and should be integrated in (F)OFBs... from the very beginning !!!
- SLS DBPM system is a matured child of it's time... but starting to get old
 - \rightarrow limited possibilities to extend (FEMTO, photon BPMs, etc...)
 - → critical HW components are outdated... new concept based on VPC-board (B. Keil)
- beamline data needs to be made available for machine and possibly integrated in (F)OFBs

Report on internal "mini-workshop on beam stability at SLS"

Upcoming Session on Orbit Measurement and Correction...

<u>R. Ursic</u>	Libera Electron Beam Position Processor
G. Rehm	EBPMs and Orbit Feedback Electronics at DIAMOND
<u>B. Keil</u>	The "Generic VME PMC Carrier Board" – Status and Perspectives of a Common Digital Platform for Beam Diagnostics and Feedbacks at PSI
<u>T. Straumann</u>	Fast Orbit Feedback Electronics for SPEAR3
R. Steinhagen	Large Scale Orbit Correction for LHC
J. Bergoz	Latest Developments and What's to Come in Beam Position Measurement
Expectation	what can be expected from industry (present and future systems) as well as upcoming machines (DIAMOND, LHC, SPEAR3) as goal for beam stability to see, where are the achievements and where might be the short-comings
<u>Wish</u>	to have a lively discussion about the most appropriate way to proceed for future machines and for upgrades of present machines