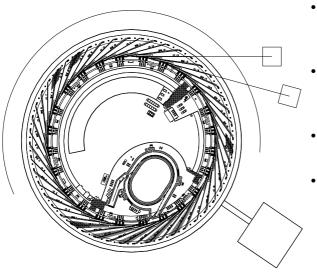
Beam Orbit Stabilization at Diamond Light Source

Ian Martin

International Workshop on Beam Stabilization Grindelwald, Switzerland $6^{th} - 10^{th}$ Dec 2004

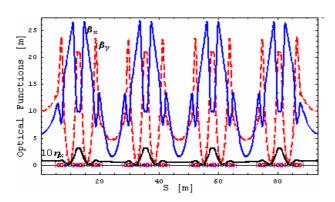
Talk Outline


- Facility overview
- Requirements for Beam Stability
- Source of orbit motion and passive measures taken
- Orbit control systems
 - Hardware (BPMs/corrector magnets)
 - Slow orbit correction scheme
 - Fast orbit correction scheme

International Workshop on Beam Stabilization

Grindelwald, Switzerland

Diamond Light Source



- Diamond is a 3rd generation synchrotron light source
- Under construction in Oxfordshire, UK
- Open to Users Jan 2007
- Consists of:
 - 100 MeV Linac
 - 100 MeV to 3 GeV Booster synchrotron
 - 3 GeV storage ring

International Workshop on Beam Stabilization Grindelwald, Switzerland 6th – 10th Dec 2004

Diamond Light Source

Lattice	DBA
Energy	3 GeV
Length	561.6 m
Symmetry	6 Fold
Structure	24 cell
Tune Point	27.23/12.36
Emittance	2.7nm.rad
Straights	5.3m/8.3m
Energy Spread	9.6x10 ⁻⁴

Requirements for Beam Stability

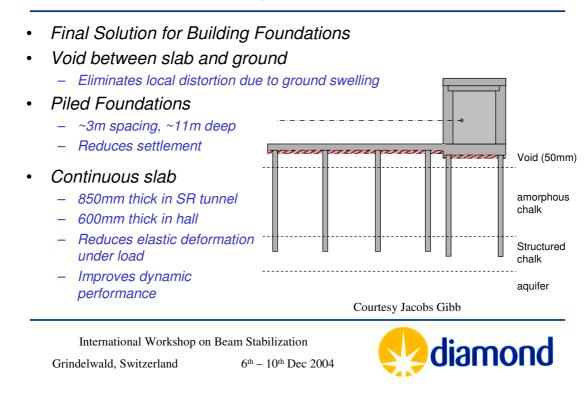
- High brightness photon beam requires small electron beam size
- Specification is the beam motion is less than 10% of beam size at source points
- In standard straights:

 $\beta_{y} = 1.53m, \ \kappa = 1\%, \ \varepsilon_{y} = 27 \ pm.rad$ $\Rightarrow \sigma_{y} = 6.4 \ \mu m \quad \sigma_{y}' = 4.2 \ \mu rad$ $\Rightarrow \Delta y < 0.6 \ \mu m \quad \Delta y' < 0.4 \ \mu rad$

International Workshop on Beam Stabilization Grindelwald, Switzerland $6^{th} - 10^{th}$ Dec 2004

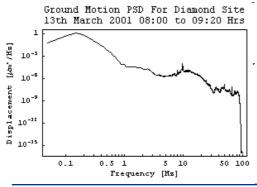
Sources of beam motion

Source	Measures Taken
Ground motion (settlement (<125µm per 10m per year), water table, vibrations (<0.5µm pk to pk))	Piled building foundations (see later slide)
Thermal changes (BPMs can move ~a few µm)	Air temp controlled to 22+/-0.5 deg C Water temp controlled to 30+/-1 deg C
Magnet misalignment (magnet displacement ~100µm gives CO errors ~a few mm)	Magnets mounted on girders (+/-70µm magnetic centre to girder alignment) Girders positioned by survey (+/-100µm)
Mechanical vibrations (from e.g. crane movement, water flow in cooling pipes, power supplies (50Hz))	Anti-vibration mounting where necessary


· Remaining motion corrected by closed orbit feedback schemes

International Workshop on Beam Stabilization

Grindelwald, Switzerland



Building Foundations

Ground Vibration Measurements

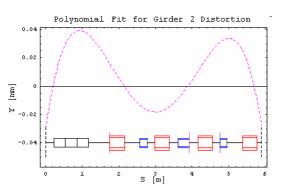
- Integrated ground motion of bare site is 12nm in 1-100Hz frequency band (measured before construction started)
- Plan to take new measurements in building during Dec 04/Jan 05
- Measure vibrations at various locations and for several different scenarios

- This will give good baseline measurements and characterize ground vibrations before accelerator components are installed
- Aids identification of new noise sources

Storage Ring Girders

- 5 degrees of freedom for girder alignment using cam system
 - heave +/- 5mm
 - sway +/- 7.1mm
 - pitch +/- 4.1 or 3.0 mrad
 - yaw +/- 5.9 or 4.3 mrad
 - roll +/- 7.0 mrad Uses cone-V-flat system

 Horizontal – Vertical Positioning System installed


– range +/-2mm, resolution +/-1µm

 Possible upgrade to Hydrostatic Levelling System

International Workshop on Beam Stabilization Grindelwald, Switzerland 6th – 10th Dec 2004

Storage Ring Girders - Static Tests

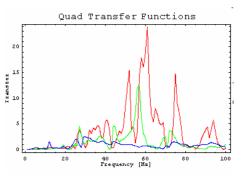
Random Error	Amplitude	
Magnet Alignment	0.03mm (RMS)	
Bend/Quad Roll	0.2mrad (RMS)	
Girder Displacement	+/-0.1mm	
Dipole Field	+/-0.1%	

- The systematic misalignments due to girder deflections under the weight of magnets have been modelled
- Resulting max/RMS quad displacements are 30µm/18µm
- Investigated how they affect closed orbit distortions, linear coupling and vertical dispersion
- Effects negligible, when compared to effects of additional random errors

Uncorrected Parameter	Just Random Errors	Random Plus Systematic Errors
RMS vertical CO	1.80mm	1.81 mm
RMS linear coupling	2.52%	2.52%
RMS vertical dispersion	4.56mm	4.56 mm

International Workshop on Beam Stabilization

Grindelwald, Switzerland

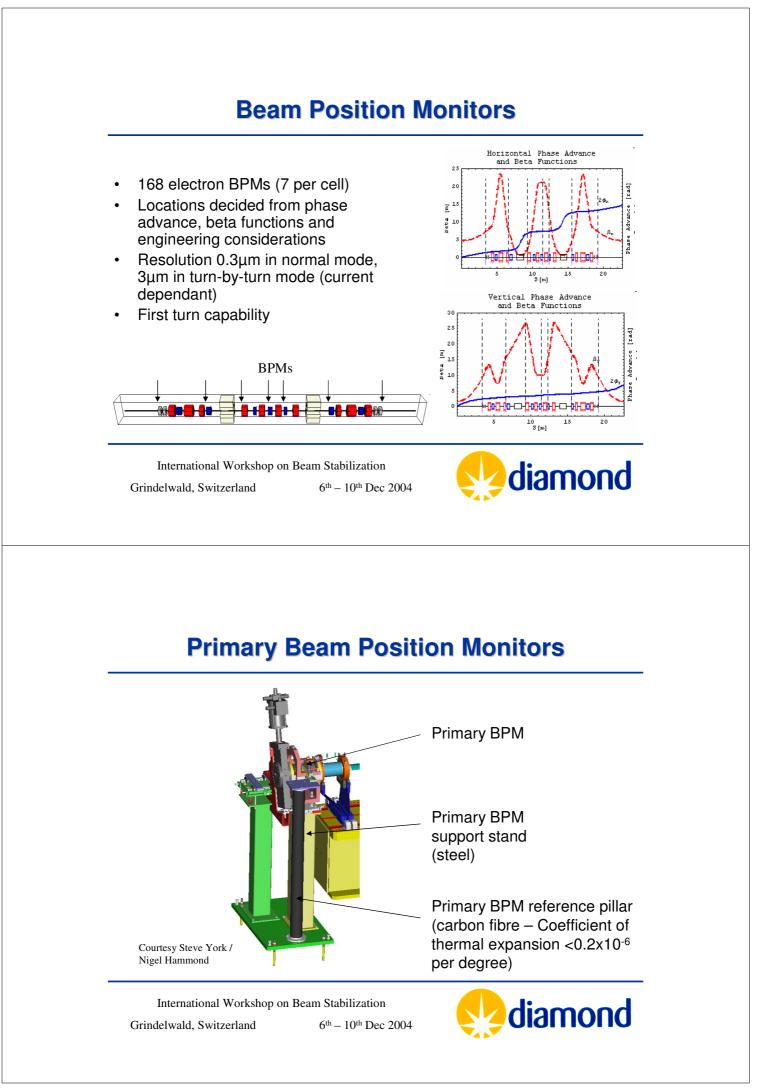


Storage Ring Girders - Dynamic Tests

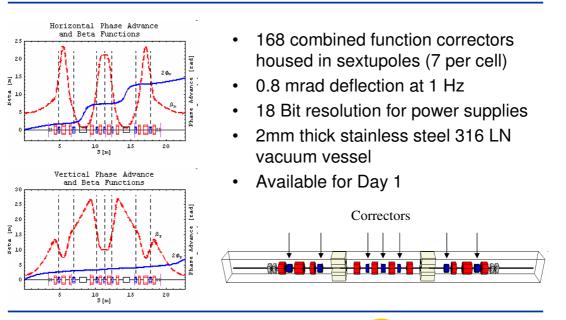
 Fundamental modes of girders measured by LTC

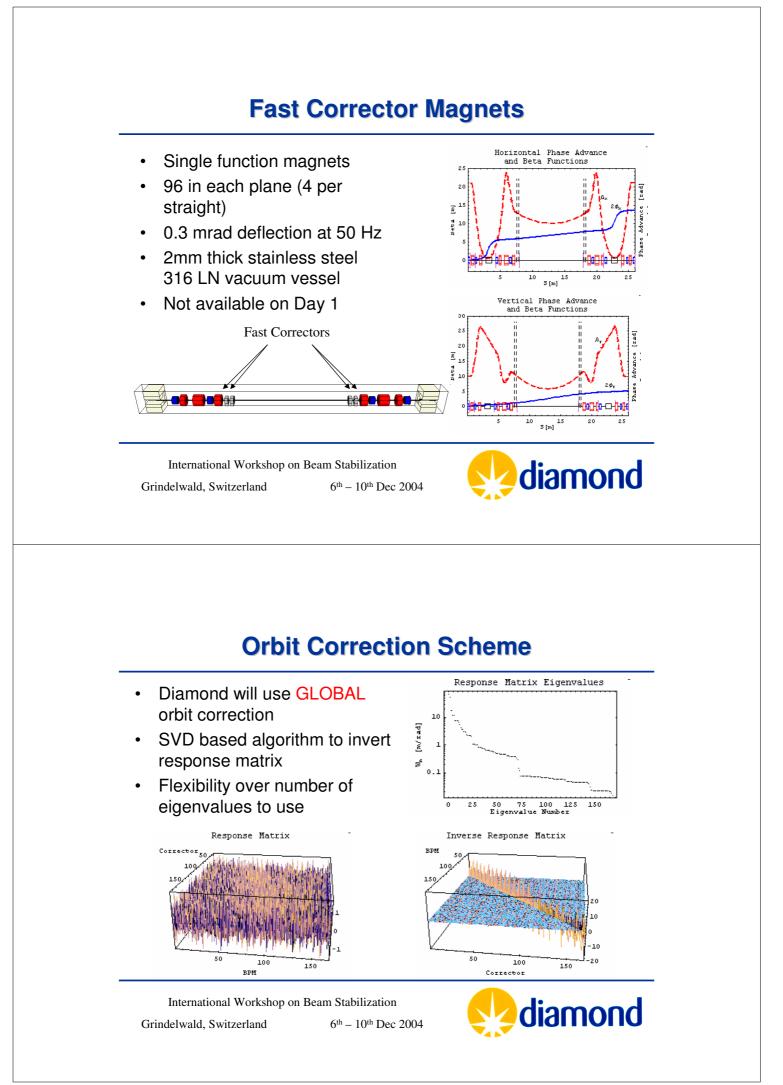
- 29 Hz (lateral rocking of support pillar B and flexure of the beam)
- 38 Hz (lateral rocking of support pillar A and flexure of the beam)
- 59 Hz (1st bending mode of the beam – lateral and vertical components)
- 77 Hz (lateral bending mode)
- 88 Hz (vertical bending mode)

- Transfer functions from 20-100Hz measured with dummy magnets
- Tests with real magnets still to be carried out



International Workshop on Beam Stabilization Grindelwald, Switzerland 6th – 10th Dec 2004


Orbit Control Systems



<section-header><section-header><section-header><section-header><complex-block><image>

Correctors in Sextupoles

Slow Orbit Correction

- Storage Ring has been modelled under various scenarios:
 - Expected magnet field errors
 - Expected magnet alignment tolerances
 - Effects of ground motion (Fourier, Gaussian, ATL)
 - Effects of mounting magnets on girders

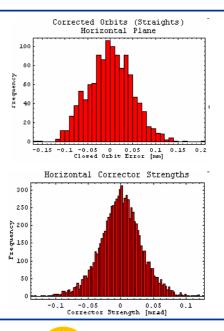
Error Type – With Girders	Size	
Girder Transverse Displacement	+/-100 μm	
Girder Longitudinal Displacement	+/-200 μm	
Element Transverse Displacement	σ = 30 μm	
Element Longitudinal Displacement	+/-500 μm	
Dipole Field Error	+/-0.1 %	
Dipole / Quad Roll Error	σ = 0.2 mrad	
BPM Transverse Displacement	σ = 50 μm	

6th - 10th Dec 2004

International Workshop on Beam Stabilization

```
Grindelwald, Switzerland
```


Slow Orbit Correction – With Girders


•	Closed Orbit in Straights				
	Uncorrected	RMS			
	Horizontal	10.1 mm	2.3 mm		
	Vertical	2.9 mm	0.7 mm		
	Corrected Maximum		RMS		
	Horizontal	0.20 mm	0.05 mm		
	Vertical	0.19 mm	0.06 mm		

Corrector Strengths

Grindelwald, Switzerland

Plane	Max Correction	RMS Correction
Horizontal	0.14 mrad	0.03 mrad
Vertical	0.14 mrad	0.03 mrad

- RMS CO distortions from ~2mm to ~50µm in straights
- BPM positional accuracy limiting factor

International Workshop on Beam Stabilization

Dispersive Orbit Correction

- Dispersive orbit correction is to be done by adjusting the RF frequency
 - The mean fractional energy deviation dP/P can be found from a 1D least-squares fit to the BPM data
 - This dP/P corresponds to a frequency change of df
 - Once df exceeds a certain magnitude, a change is made to RF frequency
- The dispersive orbit is subtracted from measured BPM data, and the dipole correctors are then only used to correct the closed orbit errors
- Helps to minimise the influence of closed orbit correction on the beam energy and dispersion

International Workshop on Beam Stabilization Grindelwald, Switzerland $6^{th} - 10^{th}$ Dec 2004

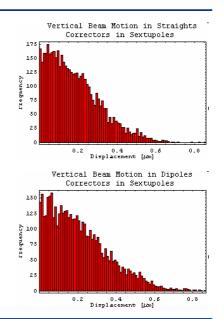
Dynamic Orbit Correction

- Expect correctors in sextupoles to be operated at higher frequency, up to limits imposed by vacuum chambers, signal processing and data transfer speeds
- 96 dedicated fast correctors will be added at the ends of the straights for fast orbit correction.
- These can be used in various ways depending upon the particular requirements:
 - Used as part of GLOBAL correction scheme in conjunction with correctors in sextupoles
 - Used locally on individual beam-lines at high frequency
 - Used in feed forward schemes
- Hardware will be in place, and there is flexibility in deciding how it is used

International Workshop on Beam Stabilization

Grindelwald, Switzerland

Dynamic Correction - Simulations


- Modelled with 0.2 µm RMS displacement on quadrupoles, sextupoles and BPMs
- Vertical beam size of 6.4 μm is tightest tolerance in straights
- Vertical divergence of 2.6 µrad tightest tolerance in dipoles
- Correction limited by BPM resolution

Beam Size	σ _X (μm)	σ _x ' (µrad)	σ _Y (μm)	σ _Y ' (µrad)
IDs	123	24.2	6.4	4.2
Dipoles	36.8	87.2	24.5	2.6

Residual Motion	X _{rms} (μm)	X' _{rms} (μrad)	Υ _{rms} (μm)	Y' _{rms} (µrad)
IDs	0.23	0.05	0.23	0.05
Dipoles	0.29	0.26	0.26	0.23

International Workshop on Beam Stabilization

- Grindelwald, Switzerland
- 6th 10th Dec 2004

Top-Up Operation

- Diamond has been designed with future top-up operation in mind
- Top up provides constant heat load on accelerator components, and eliminates current-dependent effects for diagnostics
- Requirements:
 - Reliable injector
 - Closure of injection bump
 - High injection efficiency
- Magnet Parameter Specification Kicker Bend angle 0.45 deg Kicker Peak to peak +/-0.5% repeatability Kicker Mismatch +/-0.2% Kicker Roll error 0.2mrad Septum Bend angle 8.5 deg Septum Peak to peak +/-500ppm repeatability Septum Leakage Field +/-50µTm Septum Roll error 0.2mrad Nominal bump size 13.7mm
- Collimators to be installed in BTS and SR injection straight to control emittance and energy spread

International Workshop on Beam Stabilization

Grindelwald, Switzerland

Acknowledgements

• Diamond/ASTeC Accelerator Physics Groups

Riccardo Bartolini James Jones Sue Smith

Mahdia Belgroune Hywel Owen Jenny Varley David Holder Beni Singh Naomi Wyles

- Diamond Engineering Group
- Diamond Diagnostic Group
-

International Workshop on Beam Stabilization Grindelwald, Switzerland $6^{th} - 10^{th}$ Dec 2004

