Recent development in orbit stability and the feedback system at KEK Photon Factory and PF-AR

T. OBINA / Photon Factory, KEK

1-1 Oho Tsukuba, Ibaraki Japan

Overview

Group/Member

- Control: T.Obina
- Monitor: T.Honda, K.Haga, M.Tadano
- Magnet: Y.Kobayashi,K.Harada,T.Miyajima,S.Nagahashi
- ID: S.Yamomoto, K.Tsuchiya, T.Shioya
- Head of Light Source division: T.Kasuga
-and many other contributers....

1) Photon Factory(PF)

- 1-1) Orbit stability
- 1-2) Feedback system for new undulator

2) PF-AR(PF-Advanced Ring) 2-1) Orbit stability 2-2) Injection with Pulsed-Quadrupole Magnet

KEK Site Map

Main Parameters

			PF	PF-AR
Energy		E [GeV]	2.5	6.5
Circumference		C [m]	187.07	377.26
Emittance		ε_{o} [nm × rad]	35.78	295.17
Energy Spread		$\sigma_{\rm E}/{\rm E}$	7.28474E-04	1.14586E-03
Momentum Compaction		α	6.16870E-03	1.27625E-02
Betatron Tune				
	horizonta	v_x	9.66	10.15
	vertical	v_{v}	4.25	10.19
Synchrotron Tune		v_{s}	0.0142295	0.0567625
Chromaticity		C C		
	horizonta	ξx	-12.570	-14.250
	vertical	ξv	-11.529	-13.159
Energy Loss		$U_0 [keV/rev.]$	398.853	6660.751
Damping Time				
	horizonta	τ_{x} [msec]	7.787	2.454
	vertical	τ_v [msec]	7.822	2.457
	longitudin	τ_{z} [msec]	3.921	1.230
Revolution Frequency		f _{rev} [MHz]	1.60253	0.79466
RF Frequency		f _{RF} [MHz]	500.100	500.100
Harmonic Number		h	312	640
RF Voltage		V _{RF} [MV]	1.70	17.30
Bunch Length		σ_{z} [mm]	9.40128	15.40534
RF Bucket Height		$(\Delta E/E)_{RF}$ [%]	1.217590	0.992220

1-1) Orbit Stability at PF-Ring

- Fast orbit feedback system works very stably
 - Global Feedback Cycle: 12ms
 - BPM resolution: 3um(peak-peak, 1sec)
 - Please refer to IWBS2002 proceedings
- There are no significant improvement after IWBS 2002 except for...
 - Increase # of eigenvalues: 8 -> 12
 - Max 28 (65BPM x 28Correctors)
- New Project: Upgrade of straight section
 - Shutdown Mar/2005 Sep/2005
 - Main purpose
 - Increase number of straight section
 - Magnet triplet -> doublet + short straight section
 - Number of IDs 7 -> 11 + 2 short
 - Replacement of VERY old instruments ... more than20 years!!
 - number of BPMs, Correctors will be increased
 - We are now designing new data acquisition system

1-2) Local Feedback System for New Undulator

New Undulator for circular-polarized beam

- Switch right-handed/left-handed/linear polarization
- Use mechanical switching
 - not Apple-II type
 - Chevron switch
- Switching speed: 0.8Hz

 Unfortunately, this undulator was installed in the PF ring only for several months another undulator have been used for users operation.

Undulator

Movie

External File

Result: without FB

FB system

Limitation:

- No time/budget.....
 - We used existing CAMAC modules
- FB cycle 50Hz
- No start trigger for encoder output
 GPIB control only
- Control/Data Acquisition
 - EPICS based system

Block Diagram of FB System

Feedforward+Feedback

COD with FB

Next step...

This undulator will be installed in PF-AR

- 1.5 year later
- Increase Encoder output resolution
 - 12bit -> 16bit
- Increase FB cycle
 - ◆ 50Hz -> 1kHz
 - ADC+FPGA+DAC system on cPCI (PXI)
- Improve analog front-end circuit
- How to avoid the interference of Global Orbit FB?
 PF-AR : no problem

slow COD measurement/correction in every 10sec

2-1) PF-AR Status

More than 20 year old machine

- PF-AR Upgrade Project in 2001
 - Replace Vacuum duct => Increase lifetime
 - Increase number of ST-mag => Orbit correction
 - No (or limited) budget for
 - Power supply of large magnet (B,Q,S)
 - RF Cavity
 - BPM electronics/Fast orbit correction
- We are still using
 - Old BPM-switching system
 - Replaced Mechanical SW->Mercury SW
 - Reliability of the measurement is greatly improved!!
 - Old detection circuit
 - We can measure/correct COD in every 10sec

2-2) PF-AR Injection system with Pulsed Quadrupole Magnet

Advantage of PQ-Magnet Injection system

- Only 1 magnet is enough for beam injection
 - Easy operation
 - Accuracy of manufacturing is not severe
 - Cost effective
- No need for the Injection bump
 - No coherent oscillation on the stored beam

New Global Standard for Top-up Injection!!

Why Pulsed-Q injection in PF-AR?

- In PF-AR, top-up injection is IMPOSSIBLE due to the limitation of beam transport line.
 Injection: 3GeV / Users operation: 6.5GeV
- Coherent oscillation of the stored beam will produce the wakefield
 - Limit the maximum beam current : 65mA

We are interested in:

Can we inject the beam with 1 Pulsed-Q magnet? Can we break the upper limit of the stored current? Next step:

Test top-up injection at the other facility

Principle of PQ injection

- A quadrupole magnet has zero field strength at the magnetic pole center and the field strength is proportional to the amplitude of the beam.
 - Stored beam -> passing through center -> no kick
 Injected beam -> off-axis orbit -> kicked
- Without using the bump orbit by 4- (or 3-) kicker magnets, we can inject the beam.

Orbit of injected beam

Amplitude of injected beam: almost same as kickers

Optimization of PQ location

- The oscillation of the injected beam is almost linear even with large amplitude at PF-AR. We can consider the oscillation of the injected beam as a "harmonic oscillator" by using Courant-Snyder invariant (injection emittance).
 We must install before the amplitude of injected
 - beam becomes to its maximum value.

Main Parameters of Pulsed Q magnet

Length	300	mm
vertical bore	36	mm
Horizontal bore	104	mm
turn number	1	turn
number of coils	4	
field gradient	3	T/m
current	2000	A
peak current	4000	Ар
inductanc	1.8	uH
output current	-4000	A (peak)
Pulse shape	half sine,	25PPS
Pulse width	2.4	usec
	Length vertical bore Horizontal bore turn number number of coils field gradient current peak current peak current inductanc	Length300vertical bore36Horizontal bore104turn number1number of coils4field gradient3current2000peak current4000inductanc1.8output current-4000Pulse shapehalf sine,Pulse width2.4

Field Calculation

450Gauss = 3T/m, at 15mm 1.1mrad kick

Field Measurement

Typical Pulse Shape

Installation and Beam Test

- Summer/2004
- Installed at south straight section of PF-AR
- Pulse shape have modulated a little because the cable length between PQ and PowerSupply is not equal to the optimum length due to the limitation of the location (for now).
- Beam Test
 - 15/Nov/2004 and 29/Nov/2004
 - total 12Hrs
 - with stored beam
 - with injected beam

Preliminary result next page

Result: Oscillation of Stored Beam

Beam Current

- Local bump were applied in order to match the center of PQ magnet and the position of the stored beam.
- Amplitude of the stored beam have been reduced!
- Residual oscillation still exists.... we will try again
 - We had some trouble in orbit correction system during the experiment....
- We can inject over 30mA (next page)

Beam Current : We can Inject with PQ only

Next step ...

Continue machine study

Optimize local bump orbit
Maximize beam current/injection rate

maximum current is smaller than the normal operation at the last experiment. we will investigate more.

Next week:

Observation of injected beam with fast gate camera