Dynamic Alignment at SLS

IWBS 2004, Grindelwald, December 7 ${ }^{\text {th }}, 2004$

Andreas Streun, PSI, Villigen, Switzerland

PSI:

M. Rohrer, P. Wiegand+, S. Zelenika
K. Dreyer, H.Umbricht, F. Wei
A. Jaggi, R. Kramert, V. Schlott
S. Hunt
M. Böge, L. Rivkin, A. Streun

External:

R. Ruland, SLAC, Menlo Park, USA
E. Meier, Ingenieurbüro Meier, Winterthur, Switzerland
B. Fiechter, Eltromatic AG, Winterthur, Switzerland
R. Sabjan, CosyLab, Ljubljana, Slovenia

Mechanical Engineering
Survey \& Alignment
Diagnostics
Control system
Beam Dynamics

Concept
Hydrostatic Levelling System
Girder Mover Control
Control system

Dynamic Alignment

Concept

Magnet mounted rigidly onto girders

Girder rail precision $15 \mu \mathrm{~m}$, Magnet axis calibration $30 \mu \mathrm{~m}$
Girders movable in 5 degrees of freedom
Position monitoring systems on girders

Girder motion control

Initial survey
read $u, v, w, \chi, \eta, \sigma$
GM \& GME:
5 movers \& encoders / girder
set \& readback u, v, χ, η, σ

HLS: hydrostatic levelling system:
4 pots / girder
read v, χ, σ
HPS: horizontal positioning system: 2 arms /girder read u, η (requires HLS data for evaluation)

BPM \& POMS: beam position monitors \& position monitoring system (BPM \leftrightarrow girder): 1 or 2 /girder
reconstruction of u, v, χ, η ("beam based girder alignment")
no control: w

Girder motion control: Layout

Andreas Streun, Dynamic Alignment at SLS, IWBS 2004, Grindelwald, December 6-10, 2004

Girder motion control: signal flow

Girder Movers \& Girder Mover Encoders

GM excenter working windows

Hydrostatic Levelling System

4 pots per girder

- redundancy
- get v, χ, σ with error bars

Valves

- $1 \times$ ring
. $12 \times$ single sector [48 \times girder]

Performance

- resolution:
$1 \mu \mathrm{~m}$
. range:
14 mm

Horizontal Positioning System

Readout: digital encoders $\pm 2.5 \mathrm{~mm}$ range, $0.5 \mu \mathrm{~m}$ resolution

Lever arms to adjacent girders, resp. sector terminating monuments $>$
$u+m_{z} \eta-C u-\left(C a_{z}+S a_{x}\right) \eta=\gamma\left(C c_{x}-S c_{z}\right)+m_{y} \sigma-C a_{y} \sigma-S a_{y} \chi-S w$
unknowns, HPS readout, HLS evaluation, constants, adjacent girder's quantities, out of control (set to 0)

y Linear system (4 girders/sector):

needs HLS data as input !

Girder movement: Comparison to Survey and HLS/HPS data

K. Dreyer, S.Hunt, A.Streun, H. Umbricht, F. Wei, S. Zelenika

Set Movers of Girder 02 G					
Survey of Girder			02G1	(18 reference marks)	
HLS/HPS readouts of girders			02G1..4	(sector 02	luation)
		Set	Survey	HPS/HLS	comment
Single motions:					
Sway	[$\mu \mathrm{m}$]	+100	89 ± 9	100	02G2 sway = 14 micron
Heave	[$\mu \mathrm{m}$]	+100	93 ± 6	6	HLS too slow
Roll	[$\mu \mathrm{rad}$]	+100	103 ± 24	100	
Yaw	[$\mu \mathrm{rad}$]	+100	85 ± 7	80	surge 7 ± 6 instead of 35 expected
Pitch	[$\mu \mathrm{rad}$]	+100	99 ± 6	99	surge 63 ± 6 instead of 81 expected
Combined motion:					
Sway	[$\mu \mathrm{m}$]	+50	33 ± 9	35	+ HPS/HLS evaluation works
Heave	[$\mu \mathrm{m}$]	+50	50 ± 6	30	- HLS very slow ($\tau>15 \mathrm{~min}$)
Roll	[$\mu \mathrm{rad}$]	+50	89 ± 24	55	- Yaw too small
Yaw	[$\mu \mathrm{rad}$]	+50	41 ± 7	31	- Coupling to adjacent girder ?
Pitch	[$\mu \mathrm{rad}$]	+50	51 ± 6	49	

POsition Monitoring System: BPM \leftrightarrow Girder (Quadrupole)

V.Schlott

Andreas Streun, Dynamic Alignment at SLS, IWBS 2004, Grindelwald, December 6-10, 2004

Andreas Streun, Dynamic Alignment at SLS, IWBS 2004, Grindelwald, December 6-10, 2004

Beam Based Girder Alignment....

48 girders $=96$ hor. \& 96 vert. "correctors" $\quad\left(x_{2 n / 2 n+1}=u_{n} \pm L \chi_{n}\right)$
Response and correction matrices:

Andreas Streun, Dynamic Alignment at SLS, IWBS 2004, Grindelwald, December 6-10, 2004

Orbit Correction by means of girder movements (Simulation)

SVD weighting factor filter $\omega_{i} / \omega_{0}>$ SVD weighting factors used (from 96) saved magnetic corrector strength (rms)

horizontal 0.001

60
75 \%
rms
max
OCO only BBGA + OCO
SLS/D0 mode 200 seeds (12 rejected). error settings (rms, cut 2s):

- $50 \mu \mathrm{~m}$ magnet + BPM vs. girder,
- $300 \mu \mathrm{~m}$ girder abs.
- $100 \mu \mathrm{~m}$ girder vs. girder
vertical
0
96
100 \%

Real Test

M.Böge, R.Sabjan, A.Streun, F.Wei

Girder 5: set $100 \mu \mathrm{~m}$ sway ($\Delta \mathrm{x}$)
orbit: measured
simulated
difference

SVD orbit correction with 48 girders:

Andreas Streun, Dynamic Alignment at SLS, IWBS 2004, Grindelwald, December 6-10, 2004

Dynamic Alignment - a critical review

POMS (BPM Position Monitoring System)
\checkmark useful to observe drifts and correlations, warm-up
x sensors radiation sensitive \rightarrow local shielding v
HLS (Hydrostatic Levelling System)
\checkmark monitoring of long term settlements
x too slow for interactive use
X technical problems (drifts, waves, biology, fluid mixing) $\rightarrow \boldsymbol{V}$
HPS (Horizontal Positioning System)
x depends on HLS \rightarrow no interactive use
\Rightarrow "VPS" is missing!
GM / GME(Girder Movers / Encoders)
X complex system (240 motors...) / manpower intensive
x dangerous operation (vacuum chamber stress, potential irreversibility)
x reduced eigenfrequencies (coupled girder oscillations)
\checkmark Potential of "Girder-OCO" (no true BBGA)- not needed X
\checkmark Convenient girder realignment

Andreas Streun, Dynamic Alignment at SLS, IWBS 2004, Grindelwald, December 6-10, 2004

